FOR OFFICIAL USE ONLY

ANNUAL RESEARCH REPORT ALL INDIA COORDINATED RESEARCH PROJECT ON SUGARCANE (AGRONOMY) (2016 - 2017)

NAVSARI AGRICULTURAL UNIVERSITY

RESEARCH SCIENTIST (SUGARCANE) MAIN SUGARCANE RESEARCH STATION NAVSARI AGRICULTURAL UNIVERSITY NAVSARI - 396 450

Index

Sr. No.		Name of Experiment	Page No.
1.	AS 68	Impact of integrated application of organics and inorganics in improving soil health and sugarcane (Ratoon crop)	03-09
2.	AS 68	Impact of integrated application of organics and inorganics in improving soil health and sugarcane (Plant crop)	10-15
3.	AS 69	Use of plant growth regulators (PGRs) for enhanced yield and quality of sugarcane	16-20
4.	AS 70	Scheduling irrigation with mulch under different sugarcane planting methods	21-28
5.	AS 72	Agronomic performance of elite sugarcane genotypes – Early group	29-32
6.	AS 72	Agronomic performance of elite sugarcane genotypes - Midlate group	33-36

ALL INDIA COORDINATED RESEARCH PROJECT ON SUGARCANE CENTRE: NAVSARI

1	Project No.	AS 68					
2	Title	Impact of integrated application of organica	s and inorganics in improving soil				
		health and sugarcane (2 nd Ratoon Crop)					
3	Objectives	To study the differential response of sugarca	ane crop to different nutrients				
4	Details of	\succ T ₁ : Application of trash at 10 tonnes	ha ⁻¹ + 50 % RDF				
	the treatment	\succ T ₂ : Application of trash at 10 tonnes	ha ⁻¹ + 100 % RDF				
		\succ T ₃ : Application of trash at 10 tonnes	ha ⁻¹ + soil test basis (NPK				
		application)					
		➢ T₄: Application of FYM @ 20 tonnes	s ha ⁻¹ + 50 % RDF				
		(inorganic source)					
		> T_5 : Application of FYM @20 tonnes	ha ⁻¹ + 100 % RDF				
		(inorganic source)					
		> T_6 : Application of FYM @20 to	onnes ha ⁻¹ + inorganic nutrient				
		application based on soil test (NP	K application)				
		➢ T ₇ : Application of FYM @10 tonne	s ha ⁻¹ +biofertilizer (Acetobacter +				
		PSB) + 50 % RDF					
		\succ T ₈ : Application of FYM/Compose	t @10 tonnes ha ⁻¹ +biofertilizer				
		(Acetobacter + PSB) + 100 % RD)F				
		➢ T ₉ : Application of FYM/Composi	t @10 tonnes ha ⁻¹ + biofertilizer				
		(Acetobacter + PSB) + soil test backets back	asis (NPK application)				
		➢ Date of Ratooning : 30-01-20	16				
		➢ Variety : CoN 0507	71				
		➢ Spacing : 90 cm					
		➢ Seed rate : Ratoon cr	op				
		➢ Fertilizer applied : As per tree	eatment				
		➢ Recommended dose : 300-62.5	-125 kg NPK ha ⁻¹				

ANNUAL REPORT 2016-17

			Nutrient	Basal	Toj	p dressin	g			
			Ν	25 %	759	% (In 2 sp	olits 50 &	25 % of RI	DN)	
			Р	100%		-				
			K	100%		-				
		\succ				-02-2017				
	D '									
5	Design	RBD								
6	Replications	Three								
7	Plot size	\triangleright	Gross: 6.0	0 m x 5.4	40 m					
		\triangleright	Net : 4.0	0 m x 3.0	5 m					
8	Climatic parameters	NAU,	rological observation	Oct. 201	5 to Feb. 2	2017.				
		Sr.	Month	Ten	ıp.ºc.		tive	Rainfall	Rainy	
		No.		Max.	Min.	hum A.M.	idity P.M.	(mm)	days	
		1	Dec. 2015	31.4	13.6	71.3	27.9	0	0	
		2	Jan. 2016	30.5	11.8	81.4	29.5	0	0	
		3	Feb. 2016	30.3	13.8	85.4	33.9	0	0	
		4	Mar. 2016	35.5	18.7	85.7	29.5	2.0	1	
		5	April 2016	35.6	22.1	82.4	39.9	0.0	0.0	
		6	May 2016	34.4	26.7	82.8	58.2	0.0	0.0	
		7	June 2016	33.8	27.3	84.7	71.5	91.0	3.0	
		8	July 2016	29.7	24.8	93.6	83.4	497.0	20.0	
		9	Aug. 2016	29.7	24.9	91.5	79.5	196.0	15.0	
		10	Sept 2016	30.1	23.6	96.6	76.9	529.0	13.0	
		11 12	Oct. 2016 Nov 2016	32.0 33.0	20.5 14.5	90.0 74.5	58.7 28.9	96.0 0.0	5.0 0.0	
		12	Dec. 2016	32.1	14.5	74.3	28.5	0.0	0.0	
		13	Jan. 2017	30.7	13.4	80.9	32.8	0.0	0.0	
		15	Feb. 2017	31.2	14.4	69.1	25.9	0.0	0.0	
					Total			1411	57	
		-	The average	e maximu	um tempe	rature wa	s in Apr	il-2016 (35	$.6^{0}$ C) and	
		minim	um temperatu							
			ek of June-20		•					
			unfall of 1411							
			mm was rece					-		
			016 (497 mm		-	-			-	
		-	ble for sugar		-					
			incidence of	-			· r · · · · ·			
					- as as and	r • 5 • 5 •				

9	Soil health	➢ Organic carbon : 0.24 %
	(Initial)	> Available N : 301 kg ha^{-1}
		> Available P_2O_5 : 83.84 kg ha ⁻¹
		> Available K ₂ O : 282 kg ha^{-1}
10	Summary of	The data pertaining to initial soil fertility status, growth, yield parameters
	results:	and after harvest soil status are given in table AS 68. 1 to 4. Significantly higher
		numbers of tillers were recorded with application of FYM @10 tonnes ha-
		¹ +biofertilizer Acetobacter + PSB) + soil test basis (NPK application) (T ₉) over
		application of trash at 10 tonnes $ha^{-1} + 50 \% RDF(T_1)$ However it remained at par
		with T_6 at 120 & 150 DAP.
		NMC (100.22 000 ha ⁻¹) was recorded significantly higher with treatment
		T_9 over T_1 and at par with T_3 , T_6 and T_7 . Millable cane length (249.29 cm) was
		significantly highest with T_9 over T_1 however it remained at par with almost all
		the treatments except T ₄ and T ₇ . Cane diameter was not significantly influenced
		due to different treatments. Significantly highest single cane weight was observed
		with T_9 and remained at par with the treatment T_5 and T_6 .
		Cane yield (117.59 t ha^{-1}) was recorded significantly highest with T ₉ over
		T_1 and remained at par with T_3 , T_6 and T_8 . CCS yield was significantly influenced
		due to various nutrient management treatments. Various quality parameters were
		not significantly influenced due to different nutrient management treatments
		except purity % at 10 month. Almost, all the treatment round equally effective
		over T ₅ . While at 12 month, quality parameters were not significantly influenced
		due to different treatments.
		There was no significant difference observed due to various inorganic and
		organic treatments on soil pH, EC (1:2.5) dsm ⁻¹ , available K ₂ O and BD g/cc.
		Available nitrogen recorded significantly highest with T_8 over T_1 and T_2 and
		remained at par with all the treatments while available phosphorus was also
		recorded highest with T_8 and remained at par with T_1 and T_4 .

Trial series: AS-68 Impact of integrated application of organics and inorganics in improving soil health and sugarcane

Parameter	Soil value
pH (1:10)	8.67
EC (1:10) dsm ⁻¹	0.28
Organic carbon (%)	0.24
Available N (kg ha ⁻¹)	301
Available P ₂ O ₅ (kg ha ⁻¹)	83.84
Available K ₂ O (kg ha ⁻¹)	282
Bulk density (Mg M ⁻³)	1.22
Infiltration rate (cm hr ⁻¹)	1

Table AS 68. 1: Initial Soil Analysis: At first plant crop

Application of Soil test based fertilizer:

RDF-300-62.5-125 kg NPK ha-1 f	for 2 nd ratoon crop
--------------------------------	---------------------------------

Treatment	Available N (kg ha ⁻¹)	Available P ₂ O ₅ (kg ha ⁻¹)	Available K ₂ O (kg ha ⁻¹)
T ₃	212.00	59.00	570.00
T ₆	244.67	57.33	498.66
T9	238.00	66.33	585.00

- 1. N Increase by 25 % i.e. 375 kg N ha^{-1}
- 2. P Decrease RDP by 50 % i.e. apply $31.25 \text{ kg P}_2\text{O}_5 \text{ ha}^{-1}$
- 3. K Decrease RDK by 50 % i.e. apply 62.5 kg K_2O ha⁻¹

Treatment	No. of tillers at	No. of tillers	Number of	Millable cane	Cane	Single cane	Cane yield	CCS yield
	120 DAP	at 150 DAP	Millable cane	length (cm) at	diameter	weight (kg)	(t ha ⁻¹)	(t ha ⁻¹) at
	(000 ha ⁻¹)	(000 ha ⁻¹)	at harvest	harvest	(cm) at			harvest
			(000 ha ⁻¹)		harvest			
T ₁	116.47	120.08	74.28	209.01	2.46	1.19	88.34	11.59
T ₂	119.51	124.12	86.54	222.32	2.53	1.26	100.19	13.58
T ₃	141.65	143.33	88.96	235.88	2.57	1.15	105.64	13.52
T ₄	128.33	132.31	84.93	192.71	2.50	1.34	97.22	13.22
T ₅	117.49	121.47	87.14	236.05	2.50	1.42	101.82	13.62
T ₆	143.92	148.28	96.44	240.89	2.45	1.45	114.13	16.14
T ₇	126.77	130.94	90.19	205.68	2.53	1.11	101.39	13.56
T ₈	121.19	125.71	86.05	225.67	2.55	1.05	111.57	14.49
T ₉	158.95	166.26	100.22	249.29	2.59	1.56	117.59	15.07
S.Em ±	6.81	6.83	4.06	11.52	0.09	0.07	5.23	0.85
C.D.at 5%	20.42	20.48	12.18	34.53	NS	0.21	15.67	NS
C.V.%	9.04	8.78	7.97	8.90	5.95	9.56	8.69	10.62

 Table AS 68.2 Growth and yield parameters of sugarcane as influenced by different organic and inorganic treatments

Treatment	At 10 month						At 12 month					
	Brix	CCS %	Pol %	Purity %	Pol %	Fibre %	Brix	CCS %	Pol %	Purity	Pol %	Fibre %
			juice		cane				juice	%	cane	
T ₁	17.71	10.44	15.28	86.30	11.63	13.89	20.40	13.09	18.65	91.38	14.14	14.19
T ₂	18.22	10.71	15.58	85.51	11.87	13.77	21.20	13.54	19.12	90.22	14.44	14.49
T ₃	18.08	10.49	15.48	85.57	11.79	13.84	20.17	12.73	18.55	92.03	14.04	14.31
T ₄	17.90	10.61	15.56	86.92	11.86	13.79	21.43	13.60	19.10	89.12	14.47	14.24
T ₅	17.29	9.81	14.60	84.47	11.11	13.90	21.00	13.34	19.28	91.88	14.60	14.30
T ₆	17.61	10.63	15.29	86.84	11.65	13.80	21.83	14.18	19.76	90.52	14.96	14.28
T ₇	17.42	10.08	14.89	85.47	11.33	13.87	20.90	13.38	19.37	92.66	14.64	14.44
T ₈	17.77	10.56	15.44	86.86	11.74	13.98	20.43	13.02	18.40	90.08	13.90	14.45
T ₉	17.90	10.61	15.47	86.42	11.78	13.85	20.70	12.86	18.78	90.74	14.18	14.47
S.Em ±	0.38	0.40	0.35	0.50	0.26	0.18	0.69	0.58	0.58	.99	0.44	0.21
C.D.at 5%	NS	NS	NS	1.51	NS	NS	NS	NS	NS	NS	NS	NS
C.V.%	3.70	6.79	3.92	1.01	3.94	2.27	5.73	7.61	5.32	1.88	5.33	2.55

 Table AS 68.3 Juice quality parameters of sugarcane as influenced by different organic and inorganic treatments

Treatment	pH	EC (1:2.5) dsm ⁻¹	OC%	Available N	Available P ₂ O ₅	Available K ₂ O	BD (g cc ⁻¹)
				(kg ha ⁻¹)	(kg ha ⁻¹)	(kg ha ⁻¹)	
T ₁	7.87	0.87	0.82	138.67	101.33	722.33	1.61
T ₂	8.00	0.57	0.79	153.67	86.67	660.33	1.61
T ₃	7.96	0.73	0.82	164.00	84.67	690.00	1.64
T ₄	8.05	0.58	0.74	158.33	106.33	771.00	1.65
T ₅	8.03	0.66	0.78	155.33	87.33	784.67a	1.61
T ₆	7.97	0.72	0.76	161.33	75.00	619.33	1.61
T ₇	7.96	0.77	0.71	162.67	65.67	671.33	1.61
T ₈	8.01	0.69	0.69	168.00	111.00	772.00	1.61
T ₉	8.00	0.74	0.71	166.33	89.33	733.33	1.60
S.Em ±	0.04	0.06	0.05	4.50	5.84	79.33	0.02
C.D.at 5%	NS	NS	NS	13.49	17.50	NS	NS
C.V.%	0.77	15.28	10.88	4.91	11.27	19.25	2.04
Initial	8.67	0.280	0.240	301	83.84	282	1.22

 Table AS 68.4: Soil properties after harvest of crop as influenced by different organic and inorganic treatments

1	Project No.	AS 68						
2	Title	Impact of integrated application of organics and inorganics in improving						
		soil health and sugarcane (2 nd Plant Crop)						
3	Objectives	To study the differential response of sugarcane crop to different nutrients						
4	Details of the	\succ T ₁ : No organic + 50 % RDF						
	treatment	\succ T ₂ : No organic + 100 % RDF						
		T ₃ : No organic + Soil test based recommendation						
		➤ T ₄ : Application of FYM @ 20 t ha ⁻¹ + 50 % RDF (inorganic source)						
		➤ T ₅ : Application of FYM @20 t ha ⁻¹ + 100 % RDF (inorganic source)						
		> T_6 : Application of FYM @20 t ha ⁻¹ + inorganic nutrient application based on soil test (rating chart)						
		> T ₇ : Application of FYM @10 t ha ⁻¹ +biofertilizer (<i>Acetobacter</i> +						
		PSB) + 50 % RDF						
		> T ₈ : Application of FYM @10 t ha ⁻¹ +biofertilizer (<i>Acetobacter</i> +						
		PSB) + 100 % RDF						
		> T ₉ : Application of FYM @10 t ha ⁻¹ +biofertilizer (Acetobacter +						
		PSB) + soil test basis (NPK application)						
		➢ Date of Planting : 07-12-2015						
		➢ Variety : CoN 05071						
		➢ Spacing : 90 cm						
		 Seed rate : 50000 two eye bud sett 						
		Fertilizer applied : As per treatment						
		$\blacktriangleright \text{ Recommended dose} : 250-125-125 \text{ kg NPK ha}^{-1}$						
		Nutrient Basal Top dressing						
		N 15 % 85% (In 3 splits 30,20 & 35 % of						
		RDN)						
		P 100% -						
		К 100% -						
		➢ Date of harvesting : 09-12-2016						
5	Design	RBD						

6	Replications	Three
7	Plot size	➢ Gross : 6.00 m x 5.40 m
		> Net : $4.00 \text{ m x } 3.6 \text{ m}$
8	Climatic parameters	Given in project no. AS 68 (2 nd Ratoon crop)
9	Soil health	➢ Organic carbon : 0.49%
	(Initial)	$\blacktriangleright \text{ Available N} : 359 \text{ kg ha}^{-1}$
		$\blacktriangleright \text{ Available } P_2O_5 : 23.11 \text{ kg ha}^{-1}$
		$\blacktriangleright \text{ Available } K_2 O : 358 \text{ kg ha}^{-1}$
10	Summary of	The data pertaining to initial soil fertility status, growth, yield
	results:	parameters and after harvest soil status are given in table AS 68. 1 to 4.
		Significantly higher germination % was recorded with application of
		FYM/Compost@10 tonnes ha-1+biofertilizer (Azotobacter / Acetobacter +
		PSB) + soil test basis (NPK application) (T ₉) over application of trash at 10
		tonnes ha ⁻¹ + 50 % RDF (T ₁) at 30 and 45 DAP however it remained at par
		with T ₆ at 30, 45 and DAP. Significantly higher numbers of tillers were
		recorded with treatment T ₉ at 120 & 150 DAP over T ₁ and remained at par
		with T_3 and T_6 .
		NMC (107.70 000 ha ⁻¹) was recorded significantly higher with
		treatment T_9 over T_1 and at par with T_3 , T_5 , T_6 , T_7 and T_8 . Millable cane
		length and diameter was not significantly influenced due to various
		treatments. Significantly highest single cane weight (1.36 kg) was observed
		with T_9 over T_1 and remained at par with T_6 .
		Cane (132.71 t ha ⁻¹) and CCS (17.78 t ha ⁻¹) yield was recorded
		significantly highest with T_9 over T_1 however cane yield remained at par
		with T_6 while CCS yield remained at par with T_3 and T_6 . Various quality
		parameters were not influenced significantly due to different nutrient
		management treatments at 10 month and 12 month.
		There was no significant difference observed due to various
		inorganic and organic treatments on soil pH, EC (1:2.5) dsm ⁻¹ , available
		nitrogen, available K ₂ O and BD g cc ⁻¹ . OC % was observed significantly
		highest in T_5 over other treatment and remained at par with T_4 , T_6 and T_7 .
		Available phosphorus recorded significantly highest with T_6 and remained at
		par with T ₅ .

Trial series: AS-68 Impact of integrated application of organics and inorganics in improving soil health and sugarcane

Parameter	Soil value
pH (1:10)	8.00
EC (1:10) dsm ⁻¹	0.4
Organic carbon (%)	0.49
Available N (kg ha ⁻¹)	359
Available P ₂ O ₅ (kg ha ⁻¹)	23.11
Available K ₂ O (kg ha ⁻¹)	358
Bulk density (Mg M ⁻³)	1.37

Table AS 68. 1: Initial Soil Analysis:

Application of Soil test based fertilizer:

RDF-250-125-125 kg NPK ha⁻¹ for 2nd plant crop

- 1. N Recommended dose (RD) only i.e. 250 kg N ha^{-1}
- 2. P Recommended dose (RD) only i.e. $62.5 \text{ kg } P_2O_5 \text{ ha}^{-1}$
- 3. K Decrease RDK by 50 % i.e. apply $62.5 \text{ kg K}_2\text{O} \text{ ha}^{-1}$

Treatment	Germination	Germination	No. of	No. of	Number of	Millable	Cane	Single	Cane	CCS
	at 30 DAP	at 45 DAP	tillers at	tillers at	Millable	cane length	Diameter	cane	yield	yield
			120 DAP	150 DAP	cane at	(cm) at	(cm) at	weight	(t ha ⁻¹)	(t ha ⁻¹)
			(000 ha ⁻¹)	(000 ha ⁻¹)	harvest	harvest	harvest	(kg)		
					(000 ha ⁻¹)					
T ₁	43.79	52.88	139.24	146.11	85.48	293.38	2.65	1.03	86.74	11.52
T ₂	45.49	56.79	142.68	148.51	93.55	286.79	2.70	1.14	102.33	14.59
T ₃	48.29	57.23	165.51	169.32	104.79ab	298.54	2.72	1.16	115.74	16.12
T_4	45.50	55.15	150.50	160.11	93.93	285.25	2.65	1.08	103.82	13.99
T ₅	47.57	54.32	148.71	152.49	98.31ab	293.46	2.64	1.15	105.69	14.36
T ₆	52.41	61.26	172.73	178.58	106.56ab	272.01	2.67	1.21ab	119.84ab	16.46
T ₇	46.03	55.01	152.34	160.40	97.84ab	295.23	2.71	1.07	101.39	13.76
T ₈	47.55	56.24	146.67	153.52	102.97ab	293.55	2.73	1.14	106.22	14.87
T9	56.28	65.42	182.10	189.48	107.70a	298.46	2.77	1.36a	132.71a	17.78
S.Em ±	2.43	2.41	8.94	8.05	4.50	13.22	0.10	0.06	5.59	0.87
C.D.at 5%	7.28	7.23	26.80	24.13	13.50	NS	NS	0.18	16.77	2.60
C.V.%	8.74	7.31	9.95	8.60	7.88	7.88	6.12	9.05	8.95	10.15

 Table AS 68.2 Growth and yield parameters of sugarcane as influenced by different organic and inorganic treatments

Treatment			At 10	month	At 12 month							
	Brix	CCS %	Pol %	Purity %	Pol %	Fibre %	Brix	CCS %	Pol %	Purity	Pol %	Fibre %
			juice		cane				juice	%	cane	
T ₁	17.34	10.23	14.96	86.29	11.59	12.54	21.80	13.26	19.93	91.43	15.11	14.19
T ₂	17.57	10.24	15.03	85.53	11.68	12.28	22.07	14.24	20.24	91.67	15.32	14.29
T ₃	17.55	10.25	15.04	85.69	11.63	12.68	21.00	13.94	19.54	93.06	14.83	14.10
T_4	17.42	10.46	15.21	87.28	11.78	12.55	20.93	13.46	19.15	91.44	14.55	14.01
T ₅	17.73	10.34	15.18	85.63	11.82	12.10	21.87	13.61	19.99	91.44	15.11	14.40
T ₆	17.98	10.62	15.52	86.32	12.06	12.31	22.03	13.73	19.89	90.26	15.12	13.98
T ₇	17.80	10.58	15.44	86.74	11.99	12.29	21.70	13.57	19.53	89.99	14.83	14.03
T ₈	17.41	10.16	14.91	85.68	11.62	12.07	21.63	14.01	19.89	91.93	15.11	14.03
T9	17.39	10.37	15.11	86.92	11.69	12.60	21.57	13.44	19.97	92.65	15.13	14.19
S.Em ±	0.28	0.19	0.25	0.67	0.20	0.30	0.28	0.47	0.35	1.20	0.28	0.19
C.D.at 5%	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
C.V.%	2.72	3.17	2.88	1.35	2.94	4.23	2.27	5.98	3.07	2.28	3.21	2.35

 Table AS 68.3 Juice quality parameters of sugarcane as influenced by different organic and inorganic treatments

Treatment	pH	EC (1:2.5) dsm ⁻¹	OC%	Available N	Available P ₂ O ₅	Available K ₂ O	BD (g cc ⁻¹)
				(kg ha ⁻¹)	(kg ha ⁻¹)	(kg ha ⁻¹)	
T ₁	7.62	0.24	0.63	227.33	131.67	962.00	1.68
T ₂	7.88	0.29	0.65	241.67	145.33	1111.33	1.67
T ₃	7.94	0.22	0.58	226.00	119.33	1071.00	1.69
T ₄	7.86	0.28	1.35	261.33	159.33	985.67	1.66
T ₅	7.90	0.25	1.36	254.33	166.67	1047.33	1.63
T ₆	7.81	0.21	1.28	243.33	172.67	1092.33	1.70
T ₇	7.81	0.18	1.20	221.00	140.00	1028.33	1.63
T ₈	7.90	0.23	1.18	219.00	142.67	980.00	1.65
T ₉	7.98	0.18	1.10	221.67	112.33	934.67	1.68
S.Em ±	0.08	0.03	0.05	11.37	8.54	107.39	0.03
C.D.at 5%	NS	NS	0.16	NS	25.63	NS	NS
C.V.%	1.86	20.45	9.02	8.38	10.33	18.17	2.92
Initial	8.00	0.4	0.49	359	23.11	358	1.37

 Table AS 68.4: Soil properties after harvest of crop as influenced by different organic and inorganic treatments

1	Project No.	AS-69
2	Title	Use of plant growth regulators (PGRs) for enhanced yield and quality of sugarcane
3	Objectives	 To accelerate rate and extent of sugarcane germination through the use of PGRs To assess the effect of PGRs on sugarcane growth, yield and juice quality
4	Details of	T ₁ : Conventional planting/Farmers' practice (3-bud setts)
	the	\succ T ₂ : Planting of setts after overnight soaking in water
	treatment	T ₃ : Planting of setts after overnight soaking in 50 ppm ethrel solution
		T ₄ : Planting of setts after overnight soaking in 100 ppm ethrel solution
		▶ T ₅ : T ₁ + GA3 (35 ppm) spray at 90, 120 and 150 DAP
		➤ T ₆ : T ₂ + GA3 (35 ppm) spray at 90, 120 and 150 DAP
		▶ T7: T3 + GA3 (35 ppm) spray at 90, 120 and 150 DAP
		➤ T ₈ : T ₄ + GA3 (35 ppm) spray at 90, 120 and 150 DAP
		➤ Date of planting : 04-12-2015
		➤ Variety : CoN 05071
		➤ Spacing : 90 cm
		> Seed rate : 50,000 two eye bud except treatment $T_1 \& T_5$
		> Fertilizer applied : $250-125-125 \text{ kg NPK ha}^{-1}$
		Nutrient Basal Top dressing
		N 15 % 85% (In 3 splits 30, 20 & 35 % of RDN)
		P 100% -
		K 100% -
~		Date of harvesting : 09-12-2016
5	Design	RBD
6	Replications	Three
7	Plot size	 Gross: 6.00 m x 5.40 m Net : 4.00 m x 3.6 m
8	Climatic parameters	Given in project no. AS 68 (2 nd Ratoon crop)
9	Soil health	➢ Organic carbon : 0.29%
	(Initial)	Available N : 348 kg ha ⁻¹
	(Initial)	\blacktriangleright Available P ₂ O ₅ : 33.45 kg ha ⁻¹
		$\blacktriangleright \text{ Available K}_2\text{O} : 360 \text{ kg ha}^{-1}$

10	Summary	of	The results are given in table AS 69. 1 to 6. Germination % at 20, 40 and
	results:		50 DAP were recorded significantly highest with treatment T_3 (Planting of setts
			after overnight soaking in 50 ppm ethrel solution) over other treatments and
			remained at par with treatment T_4 , T_7 and T_8 ; Germination % at 10 and 30 DAP
			was not significantly influenced due to different treatments.
			Tiller population were not significantly influenced due to different
			treatment at 90, 120 and 150 DAP; while at 180 DAP significantly highest number
			of tillers were observed with the treatment T_7 over T_1 and remained at par with T_3 ,
			T_4 and T_8 .
			Leaf area index at 120, 150, 180, 210 and 360 DAP were recorded
			significantly highest with treatment T_8 ($T_4 + GA_3$ (35 ppm) spray at 90, 120 and
			150 DAP) and remained at par with the treatments T ₃ , T ₄ , T ₆ and T ₇ at almost all
			the growth stages. Leaf area index was not significantly influenced due to different
			treatments at 90, 240, 270, 300 and 330 DAP.
			Biomass accumulation from 90 to 150 DAP were recorded significantly
			highest with treatment T_7 and remained at par with almost all the treatments except
			T ₁ ; while at 180 to 300 DAP it was recorded significantly highest with the
			treatment T_7 and remained at par with treatment T_3 , T_4 and T_8 . At 330 and 360
			DAP, different growth treatments were failed to show any significant effect on
			biomass accumulation.
			Plant height upto 150 DAP and 210 to 270 DAP was significantly
			influenced due to different treatments. Significantly highest plant height was
			recorded with T_7 over other treatment and remained at par with T_3 , T_4 and T_8 at
			almost all the growth stages. Plant height was not significantly influenced due to
			different plant growth treatment at 180, 240, 300, 330 and 360 DAP.
			Root dry weight at 50 and 180 DAP were recorded significantly highest
			with treatment T_8 over other treatment and remained at par with T_2 and T_7 however
			T ₄ also found equally effective at 180 DAP. At 180 DAP, it was not significantly
			influenced due to different treatments.
			NMC (111.08 000 ha ⁻¹) was significantly recorded higher with treatment T_7
			and remain at par the treatments T_3 , T_4 , T_6 and T_8 . Cane length and cane diameter
			at harvest is failed to show any significant effect due to different treatment. Single
			Cane weight was recorded significantly highest with treatment T_7 over other
			treatment and remained at par with T_3 and T_8 .
			Significantly highest cane yield (127.27 t ha^{-1}) was noticed with treatment T_8
			(Planting of setts after overnight soaking in 100 ppm ethrel solution + GA ₃ (35
			ppm) spray at 90, 120 and 150 DAP) but remained at par with T_3 , T_4 , and T_7 over
			T ₁ . CCS yield was not significantly influenced due to various treatments.
			Various quality parameters were not significantly influenced due to
			different treatments.

Treatment		(Germination %	ó at		T	iller populati	ion at (000 ha	ı ⁻¹)
	10 DAP	20 DAP	30 DAP	40 DAP	50 DAP	90 DAP	120 DAP	150 DAP	180 DAP
T ₁	9.01	17.60	38.36	43.85	52.03	151.80	160.42	160.79	123.59
T ₂	9.59	16.19	35.15	40.31	48.28	155.97	161.11	167.92	130.65
T ₃	10.67	20.22	44.75	50.39	61.13	169.44	173.84	180.53	143.38
T_4	10.33	18.17	41.93	47.35	57.22	166.75	170.61	177.31	138.84
T ₅	8.93	17.79	38.84	43.11	53.79	159.91	164.49	166.13	127.98
T ₆	8.39	17.47	35.84	42.49	51.75	157.04	167.38	170.46	133.33
T ₇	10.16	19.53	41.00	46.03	56.84	164.24	164.08	185.56	149.75
T ₈	9.72	19.27	38.29	44.67	54.71	165.08	176.64	183.06	145.06
SEM.±	0.48	0.78	1.89	1.77	2.37	6.04	8.09	7.51	5.41
C.D. at 5%	NS	2.38	NS	5.38	7.17	NS	NS	NS	16.42
C.V.%	8.64	7.42	8.33	6.86	7.52	6.49	8.37	7.48	6.86

 Table AS 69. 1: Effect of plant growth regulators on germination % and tiller population

 Table AS 69. 2: Effect of plant growth regulators on leaf area index

Treatment		Leaf area index at									
	90 DAP	120 DAP	150 DAP	180 DAP	210 DAP	240 DAP	270 DAP	300 DAP	330 DAP	360 DAP	
T ₁	0.29	0.47	1.00	1.99	2.48	3.21	3.74	3.72	3.65	3.30	
T ₂	0.37	0.64	1.15	2.25	2.67	3.29	4.12	3.94	3.76	3.43	
T ₃	0.34	0.61	1.08	2.57	2.98	3.56	4.61	4.30	4.24	3.90	
T ₄	0.35	0.70	1.11	2.47	2.85	3.46	4.77	4.13	4.09	3.70	
T ₅	0.34	0.57	0.98	2.40	2.57	3.28	4.33	3.86	3.86	3.51	
T ₆	0.36	0.67	1.19	2.46	2.72	3.40	4.43	4.02	3.92	3.57	
T ₇	0.36	0.69	1.24	2.67	3.07	3.60	4.91	4.48	4.38	4.04	
T ₈	0.40	0.72	1.30	2.71	3.11	3.64	5.01	4.52	4.46	4.14	
SEM.±	0.02	0.03	0.07	0.10	0.13	0.15	0.20	0.21	0.18	0.18	
C.D. at 5%	NS	0.08	0.20	0.31	0.40	NS	NS	NS	NS	0.55	
C.V.%	10.39	7.39	10.12	7.30	8.08	7.52	7.66	8.88	7.85	8.53	

Treatment				Bio	mass accur	nulation at	90 DAP (t h	a ⁻¹)		
	90 DAP	120 DAP	150 DAP	180 DAP	210 DAP	240 DAP	270 DAP	300 DAP	330 DAP	360 DAP
T ₁	1.84	3.62	5.51	14.66	21.00	28.05	37.26	42.09	47.04	51.13
T ₂	2.36	3.66	5.72	15.19	21.90	28.76	37.97	42.84	47.78	52.07
T ₃	2.48	4.24	6.31	17.87	24.21	31.53	42.23	46.80	51.48	55.60
T_4	2.47	4.23	6.27	17.49	23.83	30.95	41.50	45.62	50.60	54.90
T ₅	2.45	4.17	6.22	15.87	22.21	29.81	39.00	44.22	48.59	52.84
T ₆	2.47	4.22	6.28	16.70	23.04	30.54	39.36	44.80	49.62	53.80
T ₇	2.52	4.29	6.36	20.41	26.74	34.30	43.45	48.97	52.85	57.52
T ₈	2.49	4.25	6.32	19.95	26.29	33.87	43.14	48.20	52.46	56.78
SEM.±	0.11	0.17	0.19	0.79	1.05	1.20	1.43	1.47	1.92	1.99
C.D. at 5%	0.33	0.50	0.58	2.40	3.18	3.63	4.35	4.46	NS	NS
C.V.%	7.88	7.03	5.44	7.94	7.68	6.69	6.13	5.61	6.63	6.35

 Table AS 69. 3: Effect of plant growth regulators on biomass accumulation

 Table AS 69.
 4: Effect of plant growth regulators on plant height

Treatment		Plant height (cm) at									
	60 DAP	90 DAP	120 DAP	150 DAP	180 DAP	210 DAP	240 DAP	270 DAP	300 DAP	330 DAP	360 DAP
T ₁	81.37	98.21	117.15	133.58	159.26	170.25	187.28	201.54	220.45	233.88	243.63
T ₂	85.37	102.34	122.45	136.48	163.14	178.91	191.99	205.14	218.54	230.31	240.99
T ₃	107.73	124.43	143.57	158.54	183.79	199.63	216.84	232.44	243.08	253.46	262.54
T_4	102.24	119.92	139.20	155.91	180.91	197.86	213.21	226.99	235.24	246.31	256.02
T ₅	90.09	102.26	124.50	137.84	166.38	180.37	196.88	211.64	221.54	232.76	241.96
T ₆	92.02	106.86	126.82	140.61	168.69	183.64	202.23	216.95	226.65	235.58	245.45
T ₇	104.84	128.30	148.53	162.09	189.01	205.09	230.89	244.62	252.97	263.67	273.31
T ₈	110.74	121.54	142.19	158.54	185.79	202.74	220.37	234.29	242.87	253.78	264.56
SEM.±	4.99	5.17	6.31	6.55	7.26	7.83	9.15	9.15	10.84	10.01	11.23
C.D. at 5%	15.13	15.67	19.13	19.87	NS	23.74	27.75	27.84	NS	NS	NS
C.V.%	8.92	7.92	8.21	7.67	7.20	7.14	7.64	7.17	8.07	7.12	7.67

Treatment	Root	Dry wt. at (t	ha -1)	NMC at	Cane length	Cane	Single cane	Cane	CCS yield
	50 DAP	120 DAP	180 DAP	harvest	(cm) at	Diameter	wt at harvest	yield	(t ha ⁻¹)
				(000 ha ⁻¹)	harvest	(cm) at	(kg)	(t ha ⁻¹)	
						harvest			
T ₁	0.22	0.36	0.41	84.37	257.20	2.56	1.19	100.58	14.06
T ₂	0.30	0.39	0.49	94.61	263.66	2.61	1.05	105.35	14.09
T ₃	0.24	0.39	0.42	107.17	280.47	2.71	1.42	121.40	16.68
T ₄	0.27	0.41	0.45	103.01	280.42	2.66	1.26	124.73	17.01
T ₅	0.22	0.39	0.39	95.44	263.78	2.61	1.25	105.01	15.12
T ₆	0.26	0.42	0.43	100.29	270.31	2.67	1.22	106.87	14.05
T ₇	0.30	0.45	0.47	111.08	296.98	2.78	1.50	124.13	16.12
T ₈	0.34	0.46	0.51	106.86	290.64	2.79	1.33	127.27	17.61
SEM.±	0.01	0.02	0.02	5.14	15.62	0.11	0.06	6.53	0.98
C.D. at 5%	0.04	NS	0.07	15.60	NS	NS	0.19	19.81	NS
C.V.%	8.85	8.26	9.02	8.88	9.82	7.23	8.60	9.89	10.89

 Table AS 69. 5: Effect of plant growth regulators on root dry wt. and yield parameter (NMC, cane length, cane girth, single cane wt. and cane yield

Table AS 69.	6: Effect of plan	t growth regulators of	n juice quality	parameter at harvest

Treatment Brix %		Pol % Juice	Purity %	CCS%	Fibre %	Pol % Cane
T ₁	21.57	19.84	91.99	13.98	14.14	15.05
T_2	20.63	18.93	91.83	13.37	14.17	14.36
T ₃	21.43	19.53	91.15	13.74	14.21	14.81
T ₄	20.90	19.45	93.04	13.63	14.31	14.72
T ₅	21.73	19.62	90.29	14.40	14.33	14.85
T ₆	20.83	19.01	91.26	13.14	14.32	14.39
T ₇	20.73	19.05	91.91	12.99	14.30	14.42
T ₈	21.30	19.39	91.08	13.84	14.10	14.71
SEM.±	0.53	0.39	0.76	0.40	0.21	0.30
C.D. at 5%	NS	NS	NS	NS	NS	NS
C.V.%	4.33	3.56	1.44	5.02	2.56	3.58

1	Project No.	AS 70							
2	Title	Scheduling irrigation with mulch under different sugarcane planting methods							
3	Objectives	To enhance crop and water productivity in sugarcane							
4	Details of	Planting methods: P							
	the treatment	P1: Furrow planting (120 cm row spacing) without mulching							
		P ₂ : Furrow planting (120 cm row spacing) with green manure (dhaincha)							
		sowing at 30 DAP, mulching at 75 DAP and earthing up at 110 DAP							
		 P3: Furrow planting (120 cm row spacing) with alternate skip furrow irrigation* after earthing up without mulching P4: Furrow planting (120 cm row spacing) with alternate skip furrow irrigation * after earthing up + green manure/brown mulching 							
		* First irrigation to be given in furrow nos. 1, 3, 5. Second irrigation to be given in furrow nos. 2 & 4. Similar schedule should be followed in successive irrigation. Irrigation schedule (IW/CPE):I							
		I ₁ : 0.60							
		I ₂ : 0.80							
		I ₃ : 1.00							
		Irrigation water depth: 7.5 cm							
		Date of planting : 22-01-2016							
		➢ Variety : CoN 05071							
		➢ Spacing : 120 cm							
		➢ Seed rate : 50,000 two eye bud							
		➢ Fertilizer applied : 250-125-125 kg NPK ha ⁻¹							
		Nutrient Basal Top dressing							
		N 15 % 85% (In 3 splits 30, 20 & 35 % of RDN)							
		P 100% -							
		К 100% -							
		➤ Date of harvesting : 15-02-2017							
5	Design	Strip plot							
6	Replications	Three							
7	Plot size	Gross:8 m x 6 m Net: 6 m x 3.6 m							

8	Climatic parameters	Given in project no. AS 68 (2 nd Ratoon crop)
9	Soil health	▶ pH : 7.28
	(Initial)	\blacktriangleright EC (1:2.5) ds m ⁻¹ : 0.3
		➢ Organic carbon : 0.20%
		$\blacktriangleright \text{ Available N} : 295 \text{ kg ha}^{-1}$
		$\blacktriangleright \text{ Available P}_2\text{O}_5 : \ 277 \text{ kg ha}^{-1}$
		$\blacktriangleright \text{ Available } K_2 O : 434 \text{ kg ha}^{-1}$
		➢ Bulk density : 1.36
10	Summary of	The results are given in table AS 70. 1 to 6. Germination % at 30 DAP
	results:	were recorded significantly highest with planting method P ₃ (Furrow planting
		(120 cm row spacing) with alternate skip furrow irrigation* after earthing up
		without mulching) over other planting method and remained at par with
		treatment P4 (Furrow planting (120 cm row spacing) with alternate skip
		furrow irrigation * after earthing up + green manure/brown mulching).
		Irrigation levels failed to show significant effect on germination %.
		Interaction effect of planting methods and irrigation levels was found
		non significant.
		Tiller population was significantly influenced due to different planting
		methods at 90, 120 and 180 DAP. At all the stages, significantly highest
		numbers of tillers were recorded with planting methods P ₄ and P ₂ and remained
		at par with each other over other methods. Irrigation levels did not show
		significant effect at 90 DAP however, significantly highest tillers population
		was observed with irrigation level I_3 (1.00 IW/CPE ratio) and remained at par
		with I_2 over I_1 at 120 and 180 DAP.
		Significantly highest plant height was noticed with planting method P_4
		and P_2 and found equally effective over other methods at all the growth stages.
		Irrigation level I_3 recorded significantly highest plant height (151.45, 167.46, 183.50 cm) at 90, 120 and 180 DAP respectively over I_1 and remained at par
		with I_2 .
		NMC (106.71 000 ha ⁻¹) was significantly recorded higher with planting
		method P_4 (Furrow planting (120 cm row spacing) with alternate skip furrow
		irrigation * after earthing up + green manure/brown mulching) and remained
		at par with P_2 . Significantly highest and lowest NMC were recorded with
		- Fur white 12, Significantly inglicit and lowest time were recorded with

	irrigation levels I_3 and I_1 respectively. Cane length did not show any significant
	effect due to planting method and irrigation levels. Cane diameter was
	significantly highest with planting methods P_4 and P_2 over others methods while
	it failed to show levels of significance due to irrigation levels. Planting methods
	did not show significant effect on single cane weight while irrigation level $I_{\rm 3}$
	recorded significantly highest single cane weight (1.30 kg) over I_1 and I_2 .
	Significantly highest cane (117.26 t ha ⁻¹) and CCS (16.28 t ha ⁻¹) yield was
	noticed with planting method P4 but remained at par with P2 over other
	methods. Significantly highest cane (122.12 t ha ⁻¹) and CCS (16.68 t ha ⁻¹) yield
	was observed with irrigation level I_3 over I_1 and I_2 .
	Among various quality parameters only CCS % and pol % cane were
	significantly influenced due to planting methods. Significantly highest CCS %
	and pol % cane were observed with planting method P4 and remained at par
	with P2 and P3 over P1. Quality parameters were not significantly influenced due
	to irrigation levels.
	There was no significant difference observed due to planting method
	and irrigation level on soil pH, available nitrogen, available phosphorus
	available K_2O and BD g cc ⁻¹ . EC (1:2.5) dsm ⁻¹ recorded significantly lowest
	with planting method P1 and remained at par with P2 while OC % was recorded
	significantly highest with planting method P1 and at par with P4 however soil
	EC and OC % was not significantly influenced due to irrigation levels .
	Field water use efficiency was recorded highest (129.15 kg ha ⁻¹ mm ⁻¹)
	with irrigation level I_1 followed by I_2 (105.81 kg ha ⁻¹ mm ⁻¹) and I_3 (101.77 kg
	ha ⁻¹ mm ⁻¹)
	Interaction effect between planting methods and irrigation levels was
	found non significant for above all the growth, yield, quality and soil
	parameters.

Treatment	Germination % at 30 DAP	No. of tillers (000 ha ⁻¹) at				Plant height (cm) at	Plant height (cm) at	Plant height (cm) at
		90 DAP	120 DAP	180 DAP	90 DAP	120 DAP	180 DAP	
Planting method								
P ₁	42.90	148.81	159.13	123.52	135.85	150.85	162.43	
P ₂	42.48	159.84	170.31	133.57	147.14	161.57	174.60	
P ₃	49.82	146.43	156.18	120.69	133.01	148.39	162.14	
P ₄	47.50	163.96	176.09	138.82	151.49	167.89	183.78	
S.EM.±	1.10	3.79	4.29	3.74	4.01	4.13	4.58	
C.D. at 5%	3.82	13.11	14.84	12.96	13.88	14.30	15.84	
C.V.%	7.25	7.34	7.78	8.70	8.48	7.89	8.04	
Irrigation level								
I ₁	47.22	150.73	156.20	120.87	133.20	149.04	160.66	
I_2	45.63	154.41	163.41	127.71	140.97	155.03	168.05	
I_3	44.17	159.14	176.67	138.87	151.45	167.46	183.50	
S. EM.±	1.16	3.01	3.85	3.19	3.40	3.36	4.40	
C.D. at 5%	NS	NS	15.13	12.52	13.50	13.19	17.26	
C.V.%	8.79	6.75	8.07	8.55	8.30	7.40	8.92	
Interaction								
S.EM.±	2.15	5.89	6.75	6.52	7.07	6.48	6.15	
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS	
C.V.%	8.15	6.59	7.07	8.74	8.63	7.14	6.24	

 Table: AS 70.1 : Effect of planting methods and irrigation levels on growth parameters of sugarcane

Treatment	reatment NMC at harvest Cane length a (000 ha ⁻¹) harvest (cm)		Cane diameter at harvest (cm)Single cane weight (kg)		Cane yield (t ha ⁻¹)	CCS yield (t ha ⁻¹)	
Planting method							
P ₁	99.42	275.56	2.41	1.06	105.07	14.00	
P ₂	103.40	283.56	2.51	1.09	111.62	15.31	
P ₃	92.15	264.22	2.43	1.07	95.57	13.15	
P ₄	106.71	292.11	2.61	1.11	117.26	16.28	
S.EM.±	2.85	8.14	0.04	0.04	2.51	0.31	
C.D. at 5%	9.86	NS	0.14	NS	8.69	1.06	
C.V.%	8.51	8.76	5.03	9.82	7.01	6.26	
Irrigation level							
I	95.44	271.75	2.39	0.96	96.86	13.27	
I_2	97.75	278.92	2.52	0.99	103.16	14.10	
I ₃	108.08	285.92	2.56	1.30	122.12	16.69	
S. EM.±	2.52	6.57	0.06	0.03	2.46	0.39	
C.D. at 5%	9.90	NS	NS	0.11	9.65	1.54	
C.V.%	8.70	8.16	9.02	9.26	7.93	9.27	
Interaction							
S.EM.±	5.77	13.51	0.08	0.05	5.74	0.91	
C.D. at 5%	NS	NS	NS	NS	NS	NS	
C.V.%	9.95	8.39	5.32	7.80	9.26	10.76	

 Table: AS 70.2 : Effect of planting methods and irrigation levels on yield parameters of sugarcane

Treatment	Brix	CCS %	Purity %	Fibre %	Pol % Juice	Pol % Cane
Planting method						
P ₁	20.99	13.31	90.63	14.28	19.02	14.40
P ₂	21.6	13.71	90.69	14.18	19.58	14.85
P ₃	21.73	13.76	90.50	14.12	19.67	14.92
P ₄	21.77	13.89	91.03	14.14	19.81	15.03
S.EM.±	0.28	0.09	0.48	0.08	0.16	0.12
C.D. at 5%	NS	0.32	NS	NS	NS	0.42
C.V.%	3.84	2.03	1.57	1.70	2.51	2.45
Irrigation level						
I	21.36	13.69	91.27	14.15	19.49	14.79
I ₂	21.55	13.66	90.59	14.16	19.52	14.80
I ₃	21.66	13.66	90.28	14.24	19.55	14.81
S. EM.±	0.08	0.07	0.21	0.06	0.09	0.07
C.D. at 5%	NS	NS	NS	NS	NS	NS
C.V.%	1.36	1.78	0.81	1.49	1.57	1.64
Interaction						
S.EM.±	0.28	0.19	0.75	0.17	0.25	0.18
C.D. at 5%	NS	NS	NS	NS	NS	NS
C.V.%	2.22	2.45	1.42	2.08	2.18	2.12

 Table: AS 70.3: Effect of planting methods and irrigation levels on juice quality parameters of sugarcane at harvest

Treatment	pH (1:2.5)	EC (1:2.5) dsm ⁻¹	OC %	Available N	Available	Available K ₂ O	BD (g/cc)
				(kg ha ⁻¹)	P_2O_5 (kg ha ⁻¹)	(kg ha ⁻¹)	
Planting method							
P ₁	8.13	0.39	0.79	185.33	133.11	1271.78	1.67
P ₂	8.18	0.51a	0.64	185.44	128.56	1160.44	1.64
P ₃	8.18	0.54	0.59	171.78	117.56	1138	1.61
P ₄	8.16	0.65	0.76a	184.00	123.33	1106.67	1.67
S.EM.±	0.05	0.03	0.04	20.56	5.29	67.43	0.03
C.D. at 5%	NS	0.12	0.14	NS	NS	NS	NS
C.V.%	1.73	19.44	17.69	33.96	12.64	17.30	6.09
Irrigation level							
I ₁	8.14	0.54	0.77	181.75	118.83	1205.08	1.66
I_2	8.18	0.52	0.65	178.83	125.08	1143.5	1.65
I_3	8.17	0.52	0.67	184.33	133.00	1159.08	1.64
S. EM.±	0.03	0.04	0.03	7.16	6.65	55.87	0.03
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS
C.V.%	1.07	28.44	15.31	13.65	18.35	16.55	5.43
Interaction							
S.EM.±	0.08	0.07	0.07	26.80	8.30	82.00	0.05
C.D. at 5%	NS	NS	NS	NS	NS	NS	NS
C.V.%	1.73	22.03	17.01	25.56	11.45	12.15	5.24
Initial	7.25	0.5	0.39	195	177	434	1.36

 Table AS 71.4: Effect of planting methods and irrigation levels on soil properties after harvest of sugarcane crop

No. of irrigations	Date of irrigation						
	I_1	I_2	I ₃				
1-common irrigation	22.01.2016	22.01.2016	22.01.2016				
2-common irrigation	19.02.2016	19.02.2016	19.02.2016				
3	20.03.2016	13.03.2016	09.03.2016				
4	10.04.2016	30.03.2016	24.03.2016				
5	28.04.2016	14.04.2016	05.04.2016				
6	17.05.2016	28.04.2016	17.04.2016				
7	04.06.2016	12.05.2016	28.04.2016				
8	19.11.2016	26.05.2016	09.05.2016				
9	25.12.2016	09.06.2016	21.05.2016				
10	03.02.2017	09.11.2016	01.06.2016				
11		07.12.2016	11.06.2016				
12		03.01.2017	04.11.2016				
13		03.02.2017	26.11.2016				
14			18.12.2016				
15			09.01.2016				
16			03.02.2017				
No. of irrigations	10	13	16				
Depth of irrigation water (mm)	75	75	75				
Total quantity irrigation water (mm)	750	975	1200				
Yield (kg ha ⁻¹)	96860	103160	122120				
Field water use efficiency (kg ha ⁻¹ mm ⁻¹)	129.15	105.81	101.77				

Table: AS 70.4: Treatment wise number of irrigations with field water use efficiency (kg ha⁻¹ mm⁻¹)

1	Project No.	AS 72					
2	Title	Agronomic performance of elite sugarcane genotypes (early group)					
3	Objectives	To work out agronomy of sugarcane genotypes of advanced varietal trial					
		(AVT)					
4	Details of	Variety					
	the treatment	V ₁ - Co 10004					
		V ₂ -Co 10005					
		V ₃ -Co 10006					
		V4- Co 10024					
		V ₅ -Co 10026					
		V ₆ -Co 10027					
		V ₇ -CoT 10366					
		V ₈ - CoT 10367					
		Check:					
		V ₉ -Co 85004					
		V ₁₀ -Co94008					
		V ₁₁ -CoC 671					
		➢ Fertilizer level:					
		F_1 - 125 % of recommended dose of NPK kg ha ⁻¹					
		\blacktriangleright Recommended dose : 250-125-125 kg NPK ha ⁻¹					
		> Spacing : 150 cm					
		> Seed rate : 50000 two eye bud setts ha^{-1}					
		➤ Date of Planting : 09-01-2016					
		 Fertilizer applied : As per treatment 					
		Nutrient Basal Top dressing					
		N 15 % 85% (In 3 splits 30, 20 & 35 % of RDN) P 100% -					
		K 100% -					
		$\blacktriangleright \text{ Date of harvesting} : 21-02-2017$					
5	Design	RBD					
6	Replications	Three					
7	Plot size	Gross : Gross : 6.00m x 6.00m					
,		Net : $4.00 \text{m} \times 3.00 \text{m}$					
8	Climatic	Given in project no. AS 68 (2 nd Ratoon crop)					
	parameters						

9	Soil health	▶ pH : 7.65
	(Initial)	\blacktriangleright EC (1:2.5) ds m ⁻¹ : 0.35
		➢ Organic carbon : 0.30%
		> Available N : 257 kg ha^{-1}
		> Available P_2O_5 : 135 kg ha ⁻¹
		> Available K_2O : 537 kg ha ⁻¹
		➢ Bulk density : 1.32
10	Summary of	The results are given in table AS 72. 1 & 2. Germination % at 45 DAP
	results:	were recorded significantly highest with variety V_5 (Co 10026) over other
		varieties and at par with variety V_1 (Co 10004), V_4 (Co 10024) and V_6 (Co
		10026) over checks. Number of tillers were significantly influenced due to
		different varieties at 120 and 180 DAP; significantly highest number of tiller
		(148.19 000 ha ⁻¹) was recorded with V_{11} (CoC 671) and at par with V_1 , V_2 , V_4 ,
		V_5 and V_6 at 120 DAP while at 180 DAP it remained at par with V_1 , V_4 and V_5 .
		Variety V ₁ (Co 10004) recorded significantly highest NMC (104.44 000 ha ⁻¹)
		over checks and remained at par with variety V_2 , V_3 , V_4 , V_5 and V_6 .
		Significantly highest cane length was noticed with check V ₉ (Co 85004) and
		remained at par with almost all the variety except V_2 and checks V_{10} and V_{11} .
		Different varieties did not show any significant effect on cane diameter. Check
		V_9 (Co 85004) recorded significantly highest single cane weight (1.34 kg) and
		remained at par with almost all the varieties except V_6 and checks V_{10} and V_{11} .
		Significantly highest cane yield (120.18 t ha ⁻¹) was recorded with
		variety V_4 (C0 10024) over checks and remained at par with all the varieties
		except V ₃ . Variety V ₄ (Co10024) recorded significantly highest CCS yield
		(16.49 t ha ⁻¹) over checks and at par with V_1 , V_2 , V_5 and V_8 .
		Among various quality parameters, brix, pol % juice, purity %, pol %
		cane and CCS % were significantly influenced under different varieties.
		Significantly highest brix and pol % juice were recorded with variety V_4 (Co
		10024) and at par with V_3 , V_8 and V_9 . Purity % was recorded highest with
		check V_{11} (CoC 671) and V2 (Co 10005) and remained at par with each other.
		Pol % cane and CCS % was recorded significantly highest with V_8 (CoT
		10367) and remend at par with V_3 , V_4 and Checks V_9 and V_{11} .

Variety	Germination	No. of tillers	No. of	NMC	Cane	Cane	Single	Cane	CCS
	% at 45 DAP	at 120 DAP	tillers at	(000 ha ⁻¹) at	length at	diameter	cane	yield	yield
		(000 ha ⁻¹)	180 DAP	harvest	harvest	(cm)	weight	(t ha ⁻¹)	(t ha ⁻¹)
			(000 ha ⁻¹)		(cm)		(kg)		
V ₁ - Co 10004	49.56	140.97	115.30	104.44	262.00	2.53	1.25	119.78	15.95
V ₂ -Co 10005	42.06	132.36	106.69	99.72	224.66	2.38	1.24	110.17	14.72
V ₃ -Co 10006	46.53	128.86	103.19	93.06	255.40	2.46	1.22	102.19	14.01
V ₄ - Co 10024	54.63	134.61	108.94	102.78	270.26	2.63	1.33	120.18	16.49
V ₅ -Co 10026	55.33	135.68	110.00	92.78	271.91	2.74	1.24	109.59	14.42
V ₆ -Co 10027	49.55	133.16	107.49	91.39	275.86	2.66	1.17	105.74	13.99
V ₇ -CoT 10366	48.39	128.90	103.23	88.06	277.26	2.62	1.22	107.01	14.19
V ₈ - CoT 10367	48.77	130.64	104.96	87.22	257.68	2.67	1.27	106.14	14.56
V ₉ -Co 85004	44.13	122.42	96.74	83.33	282.87	2.71	1.34	94.36	12.95
V ₁₀ -Co94008	42.15	117.02	91.34	81.39	244.09	2.65	1.17	95.02	12.60
V ₁₁ -CoC 671	44.79	148.19	122.52	94.72	241.61	2.49	1.03	94.16	12.87
S. Em. ±	2.17	5.42	4.86	4.51	11.52	0.11	0.04	5.52	0.76
C.D. at 5%	6.41	16.00	14.34	13.31	33.98	NS	0.13	16.29	2.24
C.V. %	7.87	7.11	7.91	8.44	7.66	7.01	6.02	9.04	9.22

 Table AS 72. 1: Growth, yield parameters, cane and CCS yields of sugarcane as influenced by sugarcane varieties

Variety	Brix	Pol (%) juice	Purity (%)	Fibre (%)	Pol (%) cane	C.C.S. (%)
V ₁ - Co 10004	20.95	19.01	90.74	14.09	14.43	13.31
V ₂ -Co 10005	20.88	19.03	91.13	14.25	14.41	13.35
V ₃ -Co 10006	21.71	19.62	90.39 14.26		14.86	13.71
V ₄ - Co 10024	21.98	19.69	89.59	14.09	14.95	13.71
V ₅ -Co 10026	21.18	18.95	89.48	14.10	14.38	13.19
V ₆ -Co 10027	20.79	18.87	90.79	14.28	14.29	13.22
V ₇ -CoT 10366	21.00	18.96	90.33	14.15	14.38	13.25
V ₈ - CoT 10367	21.87	19.68	89.99	13.99	14.96	13.73
V ₉ -Co 85004	21.66	19.60	90.54	14.04	14.89	13.71
V ₁₀ -Co 94008	20.97	18.96	90.40	13.91	14.43	13.26
V ₁₁ -CoC 671	20.88	19.34	92.60	14.07	14.68	13.67
S. Em. ±	0.28	0.22	0.52	0.11	0.17	0.15
C.D. at 5%	0.84	0.65	1.52	NS	0.50	0.45
C.V. %	2.31	1.97	0.99	1.31	2.00	1.96

 Table AS 72.
 2: Juice quality parameters of sugarcane as influenced by sugarcane varieties

1	Project No.	AS 72									
2	Title	Agron	Agronomic performance of elite sugarcane genotypes (midlate group)								
3	Objectives	To wo (AVT)	k out agronomy of sugarcane genotypes of advanced varietal trial								
4	Details of	````	y (Genotype	es)							
	the	V ₁ - Co 09009									
	treatment		V ₂ -Co 10015								
			V ₂ -Co 10013 V ₃ -Co 10031								
			V ₃ -Co 10031 V ₄ - Co 10033								
			V ₄ - C0 10033 V ₅ -Co 10368								
			V ₅ -Co 10369								
			V ₀ Co 1050 V ₇ -CoVC 10								
			V ₈ - PI 10131								
			V ₉ -PI 10132								
		Chec		-							
		ence	V ₁₀ -Co 8603	32							
			V ₁₀ -Co 9900								
		 Fertilizer level 									
			$F_1 - 125 \%$ of recommended dose of NPK kg ha ⁻¹								
			Recommend		: $250-125-125 \text{ kg NPK ha}^{-1}$						
			~ .		: 150 cm						
		\succ			: 50000 two eye bud setts ha ⁻¹						
		\succ	Date of plan	nting	: 25-02-2016						
		\succ	Fertilizer ap	plied	: As per treatment						
			Nutrient	Basal	Top dressing						
			Ν	15 %	85% (In 3 splits 30, 20 & 35 % of RDN)						
			Р	100%	-						
			Κ	100%	-						
		\succ	Date of har	vesting	: 02-03-2016						
5	Design	RBD									
6	Replications	Three									
7	Plot size										
		\succ	Net : 4.0	00 m x 3.00) m						

8	Climatic parameters	Given in project no. AS 68 (2 nd Ratoon crop)
9	Soil health	▶ pH : 7.53
	(Initial)	\blacktriangleright EC (1:2.5) ds m ⁻¹ : 0.34
		➢ Organic carbon : 0.29%
		$\blacktriangleright \text{ Available N} : 266 \text{ kg ha}^{-1}$
		$\blacktriangleright \text{ Available P}_2\text{O}_5 : \ 146 \text{ kg ha}^{-1}$
		$\blacktriangleright \text{ Available } K_2 O : 505 \text{ kg ha}^{-1}$
		➢ Bulk density : 1.26
10	Summary of	The results are given in table AS 72. 3 & 4. Germination % at 30
	results:	DAP were recorded significantly highest with variety V_8 (PI 10131) over
		V_5 , V_7 , V_9 and V_{11} . Significantly highest (173.41 & 139.27 000 ha ⁻¹) and
		lowest (127.58 & 93.58 000 ha-1) number of tillers were recorded with
		variety V_4 (C0 10033) and check V_{11} (Co 99004) respectively at 120 and
		180 DAP. Check V_{10} (Co 86032) recorded significantly highest NMC
		(125.70 000 ha ⁻¹) over other variety and remained at par with variety V_2 and
		V_6 . Significantly highest cane length was noticed with variety V_9 (PI
		10132) over checks and remained at par variety V_2 , V_3 and V_6 . Variety V_2
		(Co 10015) recorded significantly highest cane diameter over V_1 , V_3 and V_9
		while other variety and check remained at par. Variety V ₂ (Co 10015)
		recorded significantly highest single cane weight (1.20 kg) over check Co
		86032 (V_{10}) and variety V_1 and V_3 while other varieties and check remained
		at par with V_{10} .
		Significantly highest cane yield (127.78 t ha ⁻¹) was recorded with
		variety V_2 (C0 10015) over checks and remained at par with the varieties V_5 ,
		V_6 and $V_{8.}$ CCS yield was not significantly influenced due to different varieties.
		Among various quality parameters, brix, pol % juice, pol % cane and
		CCS % were significantly influenced with different varieties. Significantly
		highest this parameters were recorded with variety V_5 (CoT 10368) and check
		V_{11} (Co 99004) and found equally effective over other varieties further pol %
		juice and pol % cane remained also at par with V_4 and CCS % with variety V_4
		and V ₆ .

Variety	Germination	No. of tillers	No. of	NMC	Cane	Cane	Single	Cane	CCS
	% at 30 DAP	at 120 DAP	tillers at	(000 ha ⁻¹) at	length at	diameter	cane	yield	yield
		(000 ha ⁻¹)	180 DAP	harvest	harvest	(cm)	weight	(t ha ⁻¹)	(t ha ⁻¹)
			(000 ha ⁻¹)		(cm)		(kg)		
V ₁ -Co 09009	45.38	138.54	105.87	108.12	261.33	2.45	1.05	111.75	15.18
V ₂ -Co 10015	47.14	149.23	114.92	122.62	295.00	2.59	1.20	127.78	17.12
V ₃ -Co 10031	45.92	144.31	110.13	108.98	272.00	2.43	1.02	110.41	15.24
V ₄ -Co 10033	45.26	173.41	139.27	109.62	256.67	2.56	1.11	108.06	15.40
V ₅ -CoT 10368	41.75	146.14	111.66	105.05	246.67	2.62	1.07	114.93	16.60
V ₆ -CoT 10369	49.55	145.54	111.35	117.49	273.67	2.65	1.06	122.50	17.02
V ₇ -Co VC 10061	41.90	140.15	105.94	109.99	196.67	2.71	1.17	111.75	15.42
V ₈ -PI 10131	50.33	142.47	109.05	109.05	265.67	2.59	1.12	116.63	15.08
V ₉ -PI 10132	44.13	137.01	102.61	104.71	309.00	2.54	1.16	108.59	14.64
V ₁₀ -Co 86032	45.21	146.94	113.46	125.70	245.67	2.57	0.95	109.33	14.67
V ₁₁ -Co 99004	42.35	127.58	93.58	99.46	262.33	2.57	1.07	95.44	13.29
S. Em. ±	1.85	6.99	7.10	5.11	13.23	0.05	0.05	5.41	0.84
C.D. at 5%	5.44	20.62	20.97	15.07	39.02	0.15	0.14	15.95	NS
C.V. %	7.05	8.37	11.12	7.97	8.74	3.45	7.43	8.33	9.47

 Table AS 72.
 3: Growth, yield parameters, cane and CCS yield of sugarcane as influenced by sugarcane varieties

Variety Brix		Pol (%) juice	Purity (%)	Fibre (%)	Pol (%) cane	C.C.S. (%)	
V ₁ -Co 09009	21.35	19.38	90.78	14.03	14.72	13.6	
V ₂ -Co 10015	20.89	19.08	91.32	13.91	14.52	13.4	
V ₃ -Co 10031	21.87	19.75	90.33	14.25	14.96	13.8	
V ₄ -Co 10033	22.45	20.33	90.54 14.01		15.45	14.2	
V ₅ -CoT 10368	22.99	20.70	90.01	14.13	15.70	14.4	
V ₆ -CoT 10369	22.22	19.93	89.69	13.92	15.16	13.9	
V ₇ -Co VC 10061	21.83	19.73	90.38 14.16		14.96	13.8	
V ₈ -PI 10131	20.70	18.56	89.64	13.98	14.11	12.9	
V ₉ -PI 10132	21.41	19.29	90.12 14.05		14.65	13.5	
V ₁₀ -Co 86032	21.94	19.37	88.29	14.06	14.71	13.4	
V ₁₁ -Co 99004	22.58	20.08	88.96	14.17	15.23	13.9	
S. Em. ±	0.17	0.22	0.76	0.16	0.17	0.20	
C.D. at 5%	0.51	0.66	NS	NS	0.51	0.59	
C.V. %	V. % 1.38 1.98		1.46	1.46 1.99		2.52	

 Table AS 72.
 4: Juice quality parameters of sugarcane as influenced by sugarcane varieties