AS 42.1 Effect of genotypes and fertility levels on germination, tiller count, yield and juice quality of sugarcane

AS 42:			Agronomic evaluation of promising sugarcane genotypes								
Year of initiati	ion		2012-13	}	4	00	0	<i></i>			
Design			FRBD								
U			4 varieties from AVT								
Treatments			V_1 : Co	V ₁ : CoC 07336; V ₂ : CoA 08324; V ₃ : CoOr 08346 and V ₄ : Co 6907							
3 fertilizer levels : 75, 100 and 125 % RDN					ſ						
Replication			3								
Recommended	l fertilizer do	se	250:100	$:60 \text{ N} : P_2O_5: \text{K}$	$L_2 O kg /ha$						
Plot size			6 x 4.8 ı	m^2							
Date of plantin	ng		6.01.14								
Date of harves	t .		17.12.14	1		~			~~~		
Treatments	Germinati	Ν	lo of	No of	NMC	Cane	Juice	Juice	CCS	CCS	
	on %	ti	illers	tillers	(000/ha)	yield	Brix	Sucrose	%	yield	
	at 45 DAP		J/ha) at	(000/ha) at		(t/ha)	%	%		(t/ha)	
Construng		90	DAP	120 DAP						L	
Genotypes	50.74	-	16.07	74.42	72 (1	76.00	10.11	15.20	10.27	7.00	
CoC 07336	50.74	1	(6.97	/4.43	/2.61	/6.90	18.11	15.32	10.37	7.99	
CoA 08324	52.83	ç	90.08	87.54	83.52	86.50	18.59	15.64	10.55	9.15	
CoOr 8346	52.48	9	93.83	91.29	85.76	88.47	18.86	15.90	10.75	9.55	
Co 6907	51.61	8	38.41	85.86	80.77	84.07	18.77	15.41	10.27	8.66	
SEm +	5.519	(n)	3.400	3.400	2.760	2.429	0.141	0.145	0.136	0.294	
CD at 5 %	NS	9	9.972	9.972	8.096	7.124	0.413	0.425	NS	0.862	
N levels	L				1		1	L			
75 %	54.52	9	91.40	88.856	83.87	86.80	18.68	15.83	10.73	9.36	
100 %	51.29	9	92.29	89.750	85.07	87.86	18.80	15.62	10.47	9.21	
125 %	49.94	7	8.27	75.733	73.05	77.29	18.27	15.25	10.25	7.93	
SEm +	4.780	2	2.945	2.966	2.391	2.104	0.122	0.126	0.188	0.255	
CD at 5 %	14.018	8	3.636	8.636	7.011	6.170	0.357	0.368	NS	0.747	

AS 42.2		Mean ta	ble	
	N1	N2	N3	Mean
CoC 07336	65.59	88.08	77.03	76.90
CoA 08324	96.02	78.57	84.90	86.50
CoOr 8346	96.26	93.80	75.36	88.47
Co 6907	89.35	91.01	71.86	84.07
Mean	86.80	87.86	77.29	
	V	Ν	V x N	
Sem+	2.429	2.104	4.208	
CD at 5%	7.124	6.170	12.339	
CV	8.68			

The experiment was laid out in factorial randomized block design with three genotypes from AVT namely CoC 07336, Co A 08324 and CoOr 8346 along with one standard check *i.e.* Co 6907 on red laterite soil of the experimental farm of Sugarcane Research Station, Nayagarh. The soil was acidic (pH 5.33) in reaction with electrical conductivity of 0.206 dsm⁻¹. Available N content was in lower range (155 kg/ha), but the soil was medium in available P (19.6 kg/ha) and (K 164 kg/ha) content. The genotype CoOr 8346 produced the highest average cane yield of 88.47 t/ha with application of 100 % RDN and was closely followed by Co A 08324 (86.50 t/ha) and Co 6907 (84.07 t/ha). All these genotypes were statistically superior to CoC 07336 (76.90

t/ha). Among the four genotypes tried in the said experiment CoC 07336 produced the lowest average cane (76.90 t/ha) and CCS (7.99 t/ha) yield. comes into flowering during the month of October-November, hence is not suitable for Odisha condition.

AS 64:	Response of sugarcane crop to different plant nutrients in varied
	agro- climatic situations
Year of initiation	2012-13
Design	RBD
Treatments	13
Replication	3
Variety	Co Or 03151 (Sabita)
Recommended fertilizer dose	250:100:60 N: P ₂ O ₅ : K ₂ O kg /ha
Plot size	$8x 4.8 m^2$
Date of planting	25.2.2014
Date of harvest	28.12.2014

Treatment details:

T_1	Control (no fertilizers or manures)
T_2	Ν
T ₃	NP
T_4	NPK
T ₅	NPK+S (60 kg elemental S/ha)
T ₆	NPK+ Zn ($50 \text{ kg ZnSO}_4/\text{ha}$)
T ₇	NPK+ Fe (1 % FeSO ₄ foliar spray thrice in 1 week interval i.e. at 120, 127 and 135 DAP)
T ₈	NPK+ Mn (10 kg MnSO ₄ /ha)
T9	NPK+ S+ Zn
T_{10}	NPK+ S+ Zn+ Fe
T ₁₁	NPK+ S+ Zn+ Fe+ Mn
T ₁₂	Soil test based fertilizer application (315:100:60 kg N: P ₂ O ₅ : K ₂ O + 60 kg elemental S/ha)
T ₁₃	FYM @ 20 t/ha

AS 64.1 Effect of different plant nutrients on yield parameters of sugarcane crop

	_	Germinat	No of t	tillers (00	0/ha)	Len	gth of ca	Girth of	
	Treatments	ion% at 35 DAP	90 DAP	120 DAP	180 DAP	120 DAP	180 DAP	Harvest	cane at harvest (cm)
T_1	Control	38.1	51.0	59.9	47.8	79.1	111.3	156.3	1.79
T_2	Ν	53.2	61.3	71.3	57.4	103.1	175.0	238.3	2.15
T ₃	NP	50.9	62.4	75.6	64.7	107.1	196.0	233.3	2.25
T ₄	NPK	56.1	79.9	82.6	78.0	122.8	219.0	242.0	2.39
T ₅	NPK+S	57.7	82.7	85.2	80.5	126.0	227.7	239.3	2.42
T ₆	NPK+ Zn	54.3	80.4	86.0	78.7	127.5	238.3	244.0	2.32
T ₇	NPK+ Fe	57.7	83.6	86.6	81.9	125.8	236.3	240.0	2.25
T ₈	NPK+ Mn	56.0	77.8	80.5	74.3	115.5	236.7	242.3	2.22
T ₉	NPK+ S+ Zn	57.4	82.7	88.6	80.7	136.5	238.7	246.7	2.55
T ₁₀	NPK+ S+ Zn+ Fe	57.1	83.9	89.3	80.9	152.5	241.7	248.7	2.48
T ₁₁	NPK+ S+ Zn+ Fe+ Mn	53.8	77.3	89.1	83.0	142.8	235.0	244.7	2.39
T ₁₂	Soil test based fert. Appln.	59.8	84.5	89.8	84.5	156.5	241.7	250.0	2.65
T ₁₃	FYM @ 20 t/ha	49.8	58.2	67.7	65.2	107.5	194.7	241.0	2.25
	SEm <u>+</u>	2.13	3.40	4.33	4.16	9.28	10.02	10.51	0.16
	CD at 5 %	6.21	9.91	12.65	12.15	27.08	29.25	30.66	NS
	CV%	6.30	7.31	8.56	9.03	12.03	7.46	7.12	10.72

	Treatments	Brix % 1 month prior to harvest	Brix % at harvest	CCS % at harvest	NMC (000/ha)	Cane yield (t/ha)	CCS (t/ha)
T_1	Control	15.47	17.86	10.34	33.24	43.42	4.47
T_2	N	16.13	18.04	10.76	45.04	58.00	6.25
T ₃	NP	15.73	17.94	10.90	49.78	67.33	7.36
T_4	NPK	15.77	18.29	10.71	63.14	71.33	7.64
T 5	NPK+S	16.23	18.71	10.76	64.06	75.63	8.14
T_6	NPK+ Zn	15.53	17.76	11.06	63.88	76.00	8.42
T ₇	NPK+ Fe	15.67	18.20	10.83	66.95	72.78	7.87
T_8	NPK+ Mn	16.13	18.41	10.69	55.34	69.33	7.40
T9	NPK+ S+ Zn	15.37	17.85	10.77	66.81	77.33	8.34
T ₁₀	NPK+ S+ Zn+ Fe	15.90	18.27	11.07	66.95	79.72	8.82
T ₁₁	NPK+ S+ Zn+ Fe+ Mn	15.80	18.29	10.85	68.08	78.14	8.47
T ₁₂	Soil test based fert. Appln.	16.03	18.39	10.78	69.47	81.44	8.79
T ₁₃	FYM @ 20 t/ha	15.37	17.92	10.89	44.90	54.65	5.95
	SEm <u>+</u>	0.35	0.19	0.19	3.97	7.58	0.84
	CD at 5 %	NS	0.55	NS	11.60	22.13	2.45
	CV%	3.54	1.66	2.81	10.90	11.45	14.79

AS 64.2 Effect of different plant nutrients on juice quality and yield of sugarcane

Soil test based fertilizer application (315:100:60 kg N: P_2O_5 : $K_2O + 60$ kg elemental S/ha) resulted in higher number of tillers at different growth stages of sugarcane genotype "Sabita" leading to highest cane (81.44 t/ha) and CCS yield (8.79 t/ha). The length (250.0 cm) and girth (2.65 cm) of the canes at harvest were also the higher as compared to all other treatment combinations. Application of NPK+ S+ Zn+ Fe (cane yield of 79.72 and CCS yield of 8.82 t/ha), NPK+ S+ Zn+ Fe+ Mn (cane yield of 78.14 t/ha and CCS yield of 8.47t/ha) NPK+ S+ Zn (cane yield of 77.33 and CCS yield of 8.34 t/ha), were next in order. The crop responded well to micronutrient application.

	Treatments		pH EC		Available (Kg/ha)				Available(ppm)		
		•	(dsm ⁻¹)	(%)	Ν	Р	K	S	Fe	Mn	Zn
T_1	Control	5.11	0.241	0.463	116.3	16.5	135.4	2.1	23.27	55.36	0.61
T_2	Ν	5.31	0.225	0.501	146.6	22.6	143.6	2.5	22.00	58.21	0.55
T ₃	NP	5.32	0.251	0.472	140.3	26.4	148.4	2.0	23.20	69.85	0.52
T ₄	NPK	5.24	0.209	0.436	141.7	25.4	137.2	2.2	26.60	75.69	0.69
T ₅	NPK+S	5.12	0.201	0.448	153.0	23.6	149.2	2.9	22.25	57.30	0.76
T ₆	NPK+ Zn	5.16	0.189	0.511	145.0	24.3	165.9	2.3	25.01	55.61	0.84
T ₇	NPK+ Fe	5.20	0.212	0.466	150.6	28.6	158.3	1.6	24.80	61.23	0.76
T ₈	NPK+ Mn	5.28	0.186	0.501	149.3	27.6	153.8	1.9	24.11	67.56	0.81
T9	NPK+ S+ Zn	5.17	0.194	0.523	139.0	26.5	154.6	2.8	22.40	56.56	0.92
T ₁₀	NPK+ S+ Zn+ Fe	5.25	0.208	0.466	141.6	18.6	156.8	2.7	23.75	56.33	0.91
T ₁₁	NPK+ S+ Zn+ Fe+ Mn	5.21	0.183	0.420	145.5	22.6	166.2	2.5	25.30	60.38	0.88
T ₁₂	Soil test based fert Appln	5.23	0.197	0.429	185.5	25.6	177.5	2.8	26.75	56.33	0.72
T ₁₃	FYM @ 20 t/ha	5.28	0.208	0.431	130.7	18.8	139.6	2.0	24.61	50.33	0.68
	Initial	5.26	0.226	0.451	190.7	29	239.3	3.6	28.03	67.59	0.59

AS 64.3 Effect of different plant nutrients on soil fertility status after harvest of sugarcane crop

The experimental soil was acidic in reaction with the soil pH ranging from 5.17 to 5.32

with the initial value of 5.26. The soil was low in organic carbon (0.420 to 0.511%), available N (116.3 kg/ha in control plot to 185.5 kg/ha with soil test based fertilizer application), S (1.6 to 2.9 kg/ha) and Zn (0.52 to 0.92 ppm). Available P and K were in medium range of soil fertility, whereas available Fe and Mn content of the soil were in higher range.

AS 66:	Priming of cane nodes for accelerating germination
Year of initiation	2012-13
Design	RBD
Treatments	6
Replication	4
Variety	Co Or 04152 (Raghunath)
Recommended fertilizer dose	250:100:60 kg N: P ₂ O ₅ K ₂ O / ha
Plot size	$6 \text{ x } 4.8 \text{ m}^2$
Date of sowing	09.01.2014
Date of harvest	12.01.2014

AS 66.1 Effect of priming of cane nodes on germination and shoot count at various stages of cane growth

	Treatments		erminatior	1%	No of shoots (000/ha)			
		20 DAP	30 DAP	40 DAP	60 DAP	90 DAP	120 DAP	150 DAP
T_1	Unprimed cane node	11.19	31.25	41.50	39.84	55.75	69.02	65.02
T ₂	Treating cane nodes in 50 ^o C hot water for 2 hrs	11.31	35.25	50.75	41.49	61.84	78.00	72.00
T ₃	Treating cane nodes in (50°C) hot water urea solution(3%) for 2 hrs	11.65	35.20	51.07	49.83	67.87	81.75	75.75
T_4	Priming of nodes in cattle dung (1): cattle urine (2) : water(5) ratio	11.45	40.15	51.13	51.39	68.48	82.75	76.75
T ₅	Conventional 3 bud sett planting	13.18	42.83	57.50	64.43	73.73	91.50	85.50
T ₆	Primed and sprouted cane nodes	12.90	41.45	55.25	61.02	66.90	89.17	83.17
	SEm <u>+</u>	0.464	1.407	2.575	3.949	2.962	2.413	2.517
	CD at 5 %	1.400	4.239	7.758	11.899	8.924	7.271	7.583
	CV%	7.78	7.47	10.06	15.39	9.01	5.88	6.59

AS 66.2 Effect of priming of cane nodes on yield parameters of cane

			No of sh	oots/clump)	Length	Girth	Weight
	Treatments	60	90	120	150	of cane	of cane	of cane
		DAP	DAP	DAP	DAP	(cm)	(cm)	(kg)
T_1	Unprimed cane node	1.00	2.00	2.50	2.25	2.3	2.3	1.14
T ₂	Treating cane nodes in 50°C hot							
	water for 2 hrs	1.00	2.00	3.50	2.75	2.4	2.4	1.22
T ₃	Treating cane nodes in $(50^{\circ}C)$ hot							
	water urea solution(3%) for 2 hrs	1.00	3.00	3.75	3.00	2.4	2.5	1.26
T_4	Priming of nodes in cattle dung							
	(1): cattle urine (2) : water(5) ratio	1.75	3.00	3.75	2.75	2.5	2.5	1.29
T ₅	Conventional 3 bud sett planting	2.00	2.75	4.50	3.25	2.7	3.0	1.30
T ₆	Primed and sprouted cane nodes	2.00	3.00	4.00	3.50	2.7	2.9	1.38
	SEm <u>+</u>	0.102	0.209	0.321	0.242	0.087	0.124	0.073
	CD at 5 %	0.308	0.630	0.966	0.728	0.263	0.375	NS
	CV%	14.00	15.94	17.49	16.56	6.97	9.56	11.62

AS 66.3 Effect of priming of cane nodes on juice quality and yield of cane

	Treatments	Brix %	Pol %	Purity %	NMC (000/ha)	Cane yield (t/ha)	CCS (t/ha)
T_1	Unprimed cane node	18.42	15.58	86.83	50.75	60.56	6.38
T ₂	Treating cane nodes in 50°C hot water for 2 hrs	17.35	15.38	90.83	62.06	79.18	8.42
T ₃	Treating cane nodes in (50°C) hot water urea solution(3%) for 2 hrs	18.79	15.61	85.28	65.25	81.90	8.54
T ₄	Priming of nodes in cattle dung (1): cattle urine (2) : water(5) ratio	18.80	15.91	87.24	75.75	82.16	8.83
T ₅	Conventional 3 bud sett planting	18.40	16.28	90.66	82.75	86.23	9.45
T_6	Primed and sprouted cane nodes	18.94	15.20	82.77	79.25	83.85	8.64
	SEm <u>+</u>	0.392	0.429	3.558	2.279	4.002	0.567
	CD at 5 %	NS	NS	NS	6.866	12.058	1.709
	CV%	4.25	5.48	8.15	7.17	12.31	13.54

Out of the six treatments, conventional method of planting three budded sugarcane setts proved to be the best with highest number of net millable canes (82.75 th/ha), cane (86.23t/ha) and CCS yield (9.45t/ha). The treatment next in order was T_6 where primed and sprouted cane nodes were planted which could produce NMC of 79.25 ('000 /ha) with cane and CCS yield of 83.85 and 8.64 t/ha, respectively. Planting of primed cane nodes in cattle dung (1): cattle urine (2): water (5) ratio could produce NMC of 75.75 ('000 /ha) cane and CCS yield of 82.16 and 8.83 t/ha, respectively. These three treatments were at par and significantly superior to other treatment combinations. The higher yield parameters i.e. number of shoots/ha, number of shoots per clump, length and girth of cane in the above mentioned treatments were the factors of higher cane and CCS yield. However, the juice quality was not affected by various priming effects. Planting of unprimed cane nodes (T_1) was the lowest yielder (cane and CCS yield of 60.56 and 6.38 t/ha, respectively).

AS 68:	Impact of integrated application of organics and inorganics in
	improving soil health and sugarcane productivity
Year of initiation	2014-15
Design	RBD
Treatments	9
Replication	3
Variety	Co Or 08 346
Recommended fertilizer dose	250-100-60 kg N P ₂ O ₅ K ₂ O/ha
Plot size	6m x 6 row x 0.8m
Date of sowing	11.01.2014
Date of harvest	11.12.2014

Treatments	Sugarcane (Plant crop)	Ratoon – I	Ratoon – II			
T ₁	50% RDF	Application of trash at 10 tonnes/ha + 50 % RDF	Application of trash at 10 tonnes/ha + 50 % RDF			
T ₂	100% RDF	Application of trash at 10 tonnes/ha + 100 % RDF	Application of trash at 10 tonnes/ha + 100 % RDF			
T ₃	Soil test based fert. application (NPK)	Application of trash at 10 tonnes/ha+ soil test basis fert (NPK) application	Application of trash at 10 tonnes/ha+ soil test basis fert (NPK) application			
T ₄	Application of FYM/Compost @ 20t/ha+ 50% RDF	Application of FYM/Compost @ 20t/ha+ 50% RDF (inorganic source)	Application of FYM/Compost @ 20t/ha+ 50% RDF (inorganic source)			
T ₅	Application of FYM/Compost @ 20t/ha+ 100% RDF	Application of FYM/Compost @ 20t/ha+ 100% RDF (inorganic source)	Application of FYM/Compost @ 20t/ha+ 100% RDF (inorganic source)			
T ₆	Application of FYM/Compost @ 20t/ha+ Soil test based fert. application (NPK)	Application of FYM/Compost @ 20t/ha+ inorganic nutrient application based on soil test(rating chart)	Application of FYM/Compost @ 20t/ha+ inorganic nutrient application based on soil test(rating chart)			
T ₇	Application of FYM/Compost @ 10t/ha+(Azotobactor/ Acetobactor +PSB)+50% RDF	Application of FYM/Compost @ 10t/ha+ biofertilizer (Azotobactor/ Acetobactor + PSB) +50% RDF (inorganic source)	Application of FYM/Compost @ 10t/ha+ biofertilizer (Azotobactor/ Acetobactor + PSB) +50% RDF (inorganic source)			
T ₈	Application of FYM/Compost @ 10t/ha+(Azotobactor/ Acetobactor +PSB)+100% RDF	Application of FYM/Compost @ 10t/ha+ biofertilizer (Azotobactor/ Acetobactor + PSB) +100% RDF (inorganic source)	Application of FYM/Compost @10t/ha+biofertilizer (Azotobactor / Acetobactor + PSB) +100% RDF (inorganic source)			
T ₉	Application of FYM/Compost @ 10t/ha + Azotobactor/ Acetobactor + PSB + Soil test based fert application (NPK)	Application of FYM/Compost @ 10t/ha + biofertilizer (Azotobactor/ Acetobactor + PSB) + Soil test based fert application (NPK)	Application of FYM/Compost @ 10t/ha+ biofertilizer (Azotobactor/Acetobactor + PSB) + Soil test based fert application (NPK)			

Treatments				No of shoots		Length	Girth	Weight	Brix %		NMC	Cane
		Germination %		(000/ha)		of cane	of	of cane		(000/ha)	yield	
		30	45	120	150	(cm)	cane	(kg)				(t/ha)
		DAP	DAP	DAP	DAP		(cm)		10 MAP	12 MAP		
T_1	50% RDF	33.00	45.23	62.64	63.79	2.7	1.70	1.29	14.3	16.4	66.79	69.67
T ₂	100% RDF	41.30	46.97	65.16	68.46	2.9	2.20	1.33	14.7	16.8	71.46	83.50
T ₃	Soil test based fert. application (NPK)	42.76	51.76	70.33	72.33	3.1	2.33	1.55	15.5	17.6	75.33	87.67
T_4	Application of FYM/Compost @ 20t/ha+ 50% RDF	44.30	53.30	71.08	72.67	2.4	2.43	1.30	15.3	16.5	76.67	79.77
T ₅	Application of FYM/Compost @ 20t/ha+100% RDF	43.82	52.82	70.47	74.67	2.7	2.20	1.29	15.3	16.4	78.67	81.66
T ₆	Application of FYM/Compost @ 20t/ha+ Soil test based fert. application (NPK)	46.04	56.90	71.97	74.63	2.9	2.30	1.31	15.0	17.1	78.63	83.17
T ₇	Application of FYM/Compost @ 10t/ha+(Azotobactor+PSB)+50% RDF	47.39	58.43	78.13	79.67	3.3	2.33	1.58	16.0	17.4	84.67	95.91
T ₈	Application of FYM/Compost @ 10t/ha+(Azotobactor+PSB)+100% RDF	45.85	57.91	79.86	82.19	3.3	2.53	1.50	15.7	17.8	87.19	96.33
T9	Application of FYM/Compost @ 10t/ha + Azotobactor + PSB + Soil test based fert application (NPK)	47.95	56.78	81.06	83.80	3.2	2.67	1.59	15.9	17.7	88.80	96.98
SEm <u>+</u>		1.858	2.577	2.833	2.455	0.174	0.164	0.062	0.358	0.423	2.455	5.606
CD at 5 %		5.571	7.724	8.493	7.359	0.520	0.492	0.186	NS	NS	7.359	16.804
CV%		7.38	8.37	6.79	5.69	10.20	12.35	9.55	4.05	4.29	5.40	11.27

AS 68.1 Impact of integrated application of organics and in-organics on germination and shoot count at various stages of cane growth

Application of FYM/Compost @ 10t/ha+(Azotobactor+PSB)+50% RDF (T₇), Application of FYM/Compost @ 10t/ha+(Azotobactor+PSB)+100% RDF (T₈) and Application of FYM/Compost @ 10t/ha + Azotobactor + PSB + Soil test based(NPK) fertilizer application (T₉) recorded higher percentage of germination at 45 DAP i.e. 58.43, 57.91 and 56.78%, respectively. These treatments subsequently performed better than other treatment combinations leading to higher yield parameters and cane yield. The length and girth of the cane were also higher 3.3 & 2.33 cm in T₇, 3.3 & 2.53 cm in T₈ and 3.2 & 2.67 cm in T₉, respectively. The NMC and Cane yield were 84.67'000 & 95.91 t/ha in T₇, 87.19'000 & 96.33 t/ha in T₈ and 88.80'000 & 96.98 t/ha in T₉, respectively. This exhibits the positive effect of organic manures and bio fertilizers on cane yield.

Treatments		BD	BD			Available Nutrient (kg/ha)			
		$(g \text{ cm}^{-3})$	pН	EC (dsm ⁻¹)	OC%	N	Р	K	
T_1	50% RDF	1.36	5.6	0.201	0.452	227	15.5	125.8	
T ₂	100% RDF	1.34	5.5	0.233	0.446	230	21.3	136.3	
T ₃	Soil test based fert. application (NPK)	1.35	5.6	0.301	0.468	246	20.4	138.4	
T ₄	Application of FYM/Compost @ 20t/ha+ 50% RDF	1.39	5.8	0.323	0.491	251	22.3	127.8	
T ₅	Application of FYM/Compost @ 20t/ha+ 100% RDF	1.40	5.9	0.331	0.501	249	23.8	129.6	
T ₆	Application of FYM/Compost @ 20t/ha+ Soil test based fert. application (NPK)	1.41	6.2	0.336	0.511	248	22.6	135.2	
T ₇	Application of FYM/Compost@ 10t/ha +(Azotobactor+PSB) + 50% RDF	1.42	5.9	0.333	0.523	255	24.3	132.6	
T ₈	ApplicationofFYM/Compost@10t/ha+(Azotobactor+PSB)+100%RDF	1.44	6.3	0.311	0.521	253	25.6	133.5	
T9	Application of FYM / Compost @ 10t/ha + Azotobactor + PSB + Soil test based fert application (NPK)	1.43	6.2	0.321	0.513	252	24.8	135.6	

AS 68.3 Impact of integrated application of organics and in-organics on soil fertility status

The soil physico-chemical parameters like BD, pH, EC, organic carbon content as well as available N, P and K content exhibited marked improvement upon application of organic source of plant nutrients.

ALL INDIA CO-ORDINATED RESEARCH PROJECT ON SUGARCANE SUGARCANE RESEARCH STATION (ORISA UNIVERSITY OF AGRICULTURE &TECHNOLOGY) AT: PANIPOILA, PO :BALUGAON, Dist : NAYAGARH

No. 151 / SRS Dt. 21.05.2015

From :

Dr. P. K. Nayak, Ph.D. Officer-in-Charge

То

The Principal Investigator (Crop Production) AICRP on Sugarcane Indian Institute of Sugarcane Research, Lucknow-226002 (UP)

Sub : Submission of data sheet 2014-15 (Crop Production)

Ref. No. F. No. 17-33/2015-PCS Dated: May 15, 2015 of PC, AICRP(S), IISR, Lucknow

Sir,

In inviting a kind reference to the subject cited above I am herewith submitting the data sheet 2014-15 of crop Production discipline of AICRP on Sugarcane, S.R.S. Nayagarh along with soft copy for your kind perusal and inclusion in the Annual Report.

This is for favour of your kind information and necessary action

With regards

yours faithfully

Encl. : As above

Sd/- P.K.Nayak OFFICER-IN-CHARGE AICRP(S) S.R.S., NAYAGARH

Memo No. 152 / SRS Dt 21.05. 2015

Copy along with data sheet and C.D. submitted to the Project Coordinator, AICRP(S), IISR, Lucknow-226002, UP for favour of information and necessary action

Sd /- P.K.Nayak OFFICER-IN-CHARGE

AICRP(S) S.R.S., NAYAGARH