

E-mail: srsthiruvalla@kau.in
Phone: 0469-2604181

KERALA AGRICULTURAL UNIVERSITY

Sugarcane Research Station, Kallungal .P.O., Thiruvalla 689 102

No. SRS II/287/07 Dated: 19.06.2014

From,

Professor and Head

To,

Dr. O.K.Sinha, Project Coordinator, AICRP on Sugarcane, Indian Institute of Sugarcane Research, LUCKNOW- 226 002, U.P.

Sir,

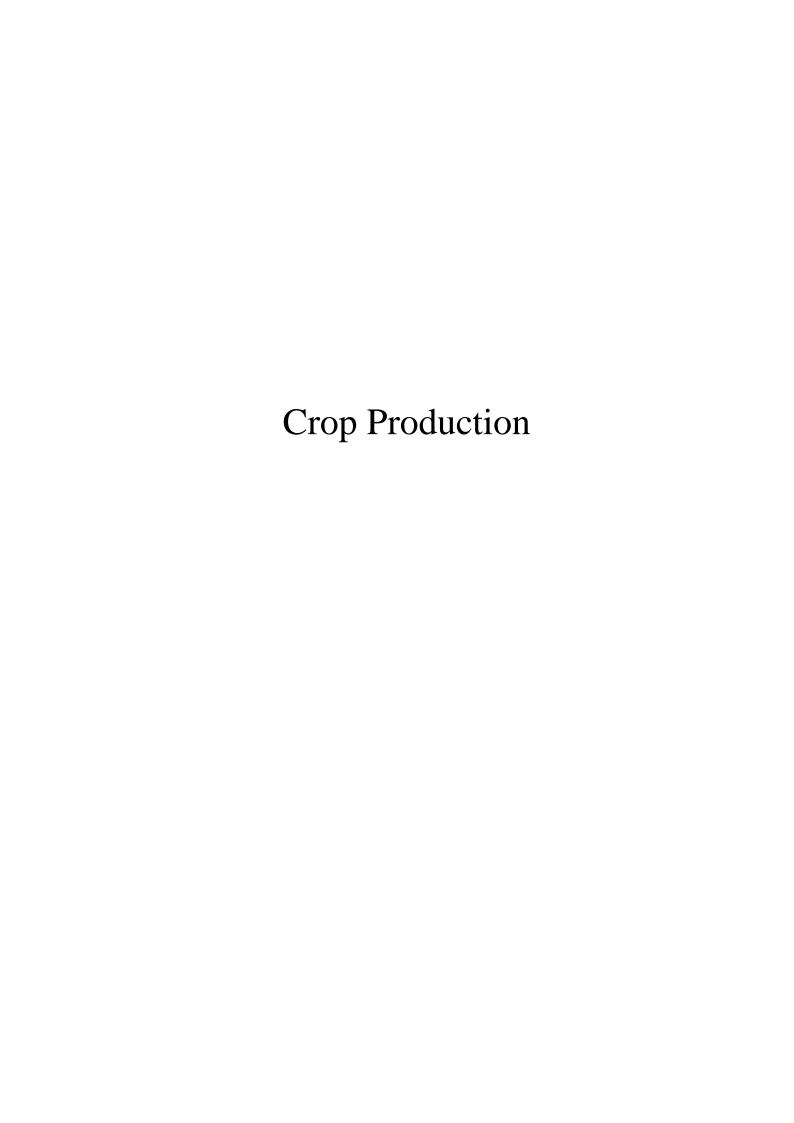
Sub:- KAU-SRS- Thiruvalla- AICRP ON Sugarcane – Annual report 2011-12-reg

I am forwarding herewith the Annual Report of the AICRP (S) (Crop Improvement, Crop Production and Plant Pathology) experiments conducted at this station for the year 2013 -14 for necessary action. The reports of Crop Improvement, Crop Production and Plant Pathology have been already sent to the respective PIs. This is for favour of your kind information.

Yours faithfully

Professor and Head

KERALA AGRICULTURAL UNIVERSITY


AICRP ON SUGARCANE

ANNUAL REPORT 2013-2014

Sugarcane Research Station, Kallumkal Thiruvalla, Kerala-689102

Staff Position

Discipline	Post/ Designation	Number of sanctioned post	Name of the incumbent	Remarks
Plant	Associate	1	Dr. Shajan, V.R.	
Breeding	Professor			
Plant	Assistant	1	Dr. Sajeena	
Pathology	Professor			
Agronomy	Assistant	1	Smt.Bindhu.J.S.	Up to 19-2-
	Professor			2014
	Assistant		Sri. Jayakumar, G	From 19-2-
	Professor			2014
	1. Farm Officer.	1	Sri.Georgy Joseph	From
	Gr.II			27-11-2013
	2. Lab. Assistant	1	Vacant	Vacant
	3. Technical	1	Vacant	Vacant
	Officer Gr.II			

KERALA AGRICULTURAL UNIVERSITY SUGARCANE RESEARCH STATION, THIRUVALLA

AICRP on Sugarcane –Crop Production

Annual Report for 2013-14

1. Name of the project : Agronomic evaluation of promising sugarcane genotypes

2. Project No : AS 42

3. Year of start : 2012-2013 (with new set of genotypes of AVT)

4. Objectives : To work out the agronomy of sugarcane genotypes of

advanced varietal trial(AVT).

5. Technical Programme

Treatments

A. Varieties

 $V_1 - CoM 06084$, $V_2 - Co 6027$, $V_3 - Co 6012$

B. Fertilizer levels

F₁- 75 percent of the recommended dose of N

F₂- 100 percent of the recommended dose of N

F₃- 125 percent of the recommended dose of N

Design - Factorial RBD Replications -Three Plot size - 6 x 5.4 m²

6. Results of the experiment for the current year

The experiment was conducted with three promising cultures namely, V_1 - CoM 06084, V_2 - Co 6027 and V_3 - Co 6012 and three nitrogen levels – ie., 75(F₁), 100(F₂) and 125 %(F₃) of the recommended dose of N (100% of the recommended dose of N = 165 kg/ha). The crop(plant crop) was planted on 24.01.2013 and harvested on 20.01.2014.For ratoon management, the existing crop was harvested on 28.01.2013.

In the plant crop, growth parameters, cane yield and sugar yield etc. were significantly influenced by the genotypes and mineral nutrition with different doses of nitrogen. Among the varieties tried, the variety Co 6012 (V₃) recorded maximum values for cane length, cane girth, single cane weight and millable cane count and thus resulted in highest cane yield (92.23 t/ha) and sugar yield (12.00 t/ha).

The yield attributing factors and cane yield were significantly influenced by different levels of nitrogen. Application of N at 125% of R.D (F_3) had recorded maximum cane yield (85.80 t/ha) and it was significantly superior to mineral nutrition with N at 75%(F_1) and was on par with N supplementation at 100% of the R.D (F_2). Similarly maximum sugar yield was also obtained for F_3 (12.00t/ha) which was on par with that of F_2 (10.74t/ha).

The interaction effect between variety and N levels were found significant only for CCS% and sugar yield at harvest.

Similar trend was noticed in the case of ratoon crop also where the growth and yield attributes were significantly influenced by the genotypes and mineral nutrition with varying doses of N. Maximum cane length, cane girth, millable cane count ,cane

yield(103.47t/ha) and sugar yield etc. were recorded by the variety Co $6012(V_3)$ followed by Co $6027(V_2)$.Supplementation of N at 125% of the R.D (F₃) had resulted in maximum growth and cane yield(97.24t/ha) and was on par with N application at 100% of the R.D. Maximum sugar yield was also obtained for F₃(11.45 t/ha) which was also on par with that of F₂(11.18 t/ha).

Interaction effect was not significant.

7. Summary

It can be concluded from the study that the genotype Co 6012 is promising as it has recorded the highest cane and sugar yield both in plant crop and ratoon followed by the genotype Co 6027. All the genotypes performed better at 125 % of the recommended dose of N.

Cane yield and juice quality as influenced by varieties and fertilizer levels(plant crop)

Treat	Cane	Cane	Single	MCC	SMT	CCS	Cane	Sugar
ments	length	girth	cane	(2000/11)	Brix	(0/)	yield	yield
	(cm)	(cm)	wt	(`000/ha)	(%)	(%)	(t/ha)	(t/ha)
			(kg)					
V_1	213.81	9.03	1.27	62.21	17.24	13.15	74.93	9.41
V_2	228.71	9.18	1.46	82.23	18.27	13.20	81.46	10.74
V_3	243.62	9.47	1.63	90.76	19.63	12.91	92.93	12.00
CD	11.85*	NS	0.2*	8.50*	1.50*	0.78*	9.8*	1.30*
(0.05)								
F_1	223.85	9.17	1.40	76.22	18.00	13.32	81.82	10.43
F_2	228.61	9.22	1.45	77.60	18.32	13.16	81.70	10.72
F_3	233.68	9.28	1.51	81.37	18.82	12.84	85.80	10.99
CD	11.85*	NS	0.2*	8.50	1.50	0.78*	9.8*	1.30*
(0.05)								
V_1F_1	209.50	9.00	1.22	61.55	17.00	13.20	79.57	9.15
V_1F_2	213.10	9.03	1.25	62.18	17.23	13.09	71.77	9.40
V_1F_3	218.83	9.06	1.34	62.93	17.50	13.15	73.47	9.67
V_2F_1	223.93	9.12	1.42	80.45	17.83	13.67	76.46	10.45
V_2F_2	228.47	9.18	1.46	82.57	18.10	13.23	81.46	10.77
V ₂ F ₃	233.73	9.24	1.49	83.67	18.87	12.72	86.43	11.00
V_3F_1	238.13	9.38	1.56	86.67	19.17	13.07	89.43	11.70
V_3F_2	244.16	9.47	1.63	88.06	19.63	13.02	91.87	12.00
V_3F_3	248.47	9.54	1.69	97.54	20.10	12.63	97.50	12.32
VxF	NS	NS	NS	NS	NS	1.53*	NS	1.78*
CD								
(0.05)								

Cane yield and juice quality as influenced by varieties and fertilizer levels(ratoon)

Treat	Cane	Cane	Single	MCC	SMT	CCS	Cane	Sugar
ments	length	girth	cane	4000 7	Brix	(0.()	yield	yield
	(cm)	(cm)	wt	(`000/ha)	(%)	(%)	(t/ha)	(t/ha)
			(kg)					
V_1	222.18	9.21	1.44	72.53	17.54	11.84	83.50	9.90
V_2	238.25	9.51	1.62	90.76	18.54	11.62	92.49	10.75
V_3	255.61	9.96	1.85	102.97	19.90	12.32	103.47	12.75
CD	12.45*	NS	0.1*	9.20*	1.53*	0.75*	9.5*	1.50*
(0.05)								
F_1	233.16	9.47	1.57	84.92	18.28	11.96	89.79	10.77
F_2	238.10	9.55	1.63	87.82	18.67	12.07	92.43	11.18
F_3	244.79	9.66	1.71	93.52	19.03	11.76	97.24	11.45
CD	12.45*	NS	0.1*	9.20	1.53	0.75*	9.5*	1.78*
(0.05)								
V_1F_1	217.93	9.14	1.36	69.09	17.30	11.64	80.70	9.40
V_1F_2	221.23	9.21	1.41	71.76	17.53	12.05	83.19	10.05
V_1F_3	222.37	9.29	1.54	76.72	17.80	11.83	86.62	10.25
V_2F_1	233.57	9.43	1.58	88.22	18.13	11.76	89.24	10.50
V_2F_2	238.56	9.49	1.62	90.46	18.50	11.72	91.72	10.75
V_2F_3	242.63	9.60	1.68	93.60	19.00	11.39	96.51	11.00
V_3F_1	247.95	9.85	1.76	97.43	19.40	12.48	99.43	12.41
V_3F_2	254.50	9.93	1.86	101.23	20.00	12.45	102.39	1275
V_3F_3	264.36	10.10	1.93	110.24	20.30	12.06	108.61	13.10
VxF	NS	NS	NS	NS	NS	NS	NS	NS
CD								
(0.05)								

S/d S/d

Signature of the Principal Investigator Signature of the Head of Station

KERALA AGRICULTURAL UNIVERSITY SUGARCANE RESEARCH STATION, THIRUVALLA

AICRP on Sugarcane - Crop Production

Annual Report for 2013-14

1. Name of the project : Plant geometry in relation to mechanization in sugarcane

2. Project No : AS 633. Duration of study : 2011-2014

4. Objectives : 1.To work out optimum plant geometry for use of farm

machinery.

2. To study varietal response to different plant geometry.

5. Technical Programme

Treatments

A: Plant Geometry

- 1. 120cm row distance (G₁)
- 2. 150cm row distance (G₂)
- 3. 30 x 150cm (G₃)
- B: Genotypes
 - 1. $V_1 CoVSI 5122$
 - 2. V₂ CoSnk 05105
 - 3. $V_3 Co\ 05007$
 - 4. V₄ Madhuri

Plot size: 6 x 8 m Design: Split plot Replications: 4

6. Results of the experiment for the current year

The experiment was conducted with four genotypes (Co VSI 5122, Co Snk 05105, Co 05007, Madhuri) with different row spacing of G_1 (120cm row distance), G_2 (150 cm row distance) and G_3 (30 x 150 cm). The crop was planted on 19-2-2013 and harvested on 12-2-2014.

The results revealed that the MCC, single cane weight, cane yield and sugar yield etc.were—significantly influenced by the row spacing. Row spacing of 30x150 cm (G₃) recorded the highest MCC (88970/ha), cane (96.67/ha) and sugar yield (10.57 t/ha).

Among the genotypes evaluated, Madhuri (V4) had recorded significantly higher cane girth, MCC, single cane weight followed by the variety Co 05007 (V₃). The variety Madhuri recorded the highest cane yield (88.04t/ha) and sugar yield (12.03t/ha). However in cane yield, it was statistically on par with the variety V₃ (Co 05007).

The results of the quality analysis revealed that the variety CoVSI 5122 recorded the highest brix value (18.64%).

The interaction effect between varieties and row spacings were found to be non significant.

7. Summary

It can be concluded from the study that the row distance of 30×150 cm was found to be suitable for getting maximum cane and sugar yield. The variety Madhuri responded well to different row spacing and it has recorded the highest cane and sugar yield followed by the variety Co 05007.

Cane yield and juice quality as influenced by plant geometry and genotypes

Treat	Cane	Cane	MCC	Single	SMT	CCS	Cane	Sugar
ment	length	girth	(`000/	cane wt.	Brix(%)		yield	yield
	(cm)	(cm)	ha)	(kg)		(%)	(t/ha)	(t/ha)
G_1	221.19	8.90	75.36	1.38	16.97	12.88	81.00	10.46
G_2	228.08	9.04	83.03	1.48	17.02	11.77	88.07	10.37
G_3	241.68	9.17	88.97	1.54	17.13	10.97	96.67	10.57
CD	9.60*	NS	5.97*	0.1*	NS	NS	3.60*	0.50*
(0.05)								
V_1	222.31	8.46	72.97	1.39	18.64	12.11	74.00	8.98
V_2	226.40	8.91	79.31	1.46	16.04	11.48	86.94	9.84
V_3	232.48	9.23	84.30	1.49	16.39	11.53	93.87	10.75
V_4	240.08	9.55	90.55	1.54	17.09	12.36	95.51	12.22
CD	9.20*	0.35*	6.75*	0.11*	NS	NS	4.05*	0.90*
(0.05)								
G_1V_1	214.70	8.32	60.08	1.32	18.47	12.68	70.83	9.00
G_1V_2	218.47	8.75	64.80	1.36	16.10	12.54	79.00	9.93
G_1V_3	222.30	9.12	72.66	1.40	16.30	12.74	84.73	10.80
G_1V_4	229.30	9.42	70.55	1.47	17.03	13.55	89.43	12.11
G_2V_1	217.93	8.45	58.20	1.40	18.63	11.98	75.84	8.85
G_2V_2	223.03	8.92	62.29	1.49	16.03	11.35	87.17	9.90
G_2V_3	230.93	9.22	68.22	1.51	16.40	11.48	92.76	10.65
G_2V_4	240.43	9.55	68.25	1.54	17.00	12.28	98.53	12.10
G_3V_1	234.30	8.60	69.44	1.47	18.83	11.70	77.33	9.05
G_3V_2	237.70	9.06	72.64	1.54	16.00	10.56	94.66	10.00
G_3V_3	244.20	9.34	83.13	1.57	16.47	10.37	104.33	10.80
G_3V_4	250.50	9.67	92.11	1.61	17.23	11.26	110.56	12.45
GxV	NS	NS	NS	NS	NS	NS	NS	NS
CD(0.05)								

S/d S/d

KERALA AGRICULTURAL UNIVERSITY SUGARCANE RESEARCH STATION, THIRUVALLA

AICRP on Sugarcane - Crop Production

Annual Report for 2013-14

1. Name of the project - Response of sugarcane crop to different plant nutrients

in varied agro-ecological situations.

2. Project No : AS 64 3. Year of start : 2011-12

4. Objective : To study differential response of sugarcane crop to

different plant nutrients

5. Technical Programme

Treatments

 T_1 – Control (No fertilizer)

 $T_2 - N$

 $T_3-NP\\$

 $T_4 - NPK$

 $T_5-NPK{+}S$

 $T_6 - NPK + Zn$

 $T_7 - NPK + Fe$

 $T_8 - NPK + Mn$

 $T_9 - NPK + S + Zn$

 $T_{10}-NPK+S+Zn+Fe\\$

 $T_{11} - NPK + S + Zn + Fe + Mn$

 T_{12} – Soil test based fertilizer application

T₁₃ - FYM @20 t/ha

Design - RBD.
Variety - Madhuri.
Replications - Three.

6. Results of the experiment for the current year:

The experiment was conducted to study the response of sugarcane crop to different plant nutrients. The crop was planted on 7.02.2013 and harvested on 2-2-2014.

The treatment variation due to different combination of plant nutrients were significant for yield parameters, cane and sugar yield. The maximum cane length was obtained from the application of NPK+Zn which was significantly superior to treatments receiving N, NP, NPK+Mn, FYM and control and was on par with all other treatments. Single cane weight, MCC, CCS were found to be statistically significant. Application of soil test based recommendation recorded highest MCC of 100240/ha.

The initial soil fertility status had shown that the soil is medium in available N, high in available P and K and the levels of S, Mn, Fe, and Zn were adequate. Soil sample

analysis after the experiment revealed that the soil status of available N, P, Fe, S, and Zn were statistically influenced by the treatments.

The soil test based recommendations (T_{12}) recorded the maximum cane yield(110.08t/ha) and sugar yield(12.85t/ha) and was on par with the recommended dose of NPK+Zn (T_6). The control plot recorded the lowest sugar and cane yield.

7. Summary

It can be concluded that for obtaining higher cane and sugar yield , fertilizer application as per soil test based recommendations and recommended dose of NPK+Zn (50 kg ZnSO $_4$ /ha) were found to be the best .

Cane yield and juice quality as influenced by different plant nutrients

	Treatments	Cane length	Cane	Cane weight	MCC ('000/	CCS	Cane yield	Sugar yield
		(cm)	girth	(kg)	ha)	(%)	(t/ha)	(t/ha)
			(cm)					
T_1	Control	193.05	9.41	1.15	60.58	13.98	60.08	8.40
T_2	N	207.25	9.73	1.26	65.13	13.15	67.31	8.85
T_3	NP	212.13	9.80	1.31	67.75	13.86	72.50	10.05
T_4	NPK	220.44	9.90	1.33	76.08	13.07	75.33	9.58
T ₅	NPK+S	225.62	9.92	1.35	82.00	12.90	95.33	12.30
T_6	NPK+Zn	234.78	10.03	1.43	90.06	12.29	102.90	12.42
T ₇	NPK+ Fe	222.81	9.80	1.28	75.18	13.77	73.33	10.10
T_8	NPK+ Mn	197.00	9.54	1.20	63.44	14.61	71.78	10.52
T 9	NPK+S+Zn	226.33	9.91	1.34	85.88	11.42	96.33	11.00
T_{10}	NPK+S+Zn+Fe	230.17	9.83	1.40	87.62	13.80	87.33	12.05
T_{11}	NPK+S+Zn+Fe+Mn	228.96	9.80	1.30	85.96	12.90	81.05	10.43
T_{12}	Soil test based							
	application	240.09	10.22	1.50	100.24	11.67	110.08	12.85
T_{13}	FYM @20 t/ha	200.22	9.56	1.20	63.92	13.69	66.35	9.08
CD	(0.05)	13.75*	NS	0.10*	11.65*	1.20*	10.75*	1.18*

INITIAL FERTILITY STATUS OF THE EXPERIMENTAL SITE									
	Available K								
Available N	Available P	(Kg/ha	S	Fe	Zn	Mn			
(Kg/ha soil)	(Kg/ha soil)	soil)	(ppm)	(ppm)	(ppm)	(ppm)			
	(6)		\ 1 1		\ 1 1 /				

	FINAL FER	RTILITY ST.	ATUS OF TH	HE EXPE	RIMENTA	AL SITE	
Treat-	Available	Available	Available	S	Fe	Zn	Mn
ments	N	P	K	(ppm)	(ppm)	(ppm)	(ppm)
	(Kg/ha	(Kg/ha	(Kg/ha				
	soil)	soil)	soil)				
T_1	185.33	17.47	200.37	6.17	195.33	1.57	26.00
T_2	249.30	19.50	226.73	4.66	205.00	2.03	39.33
T_3	222.07	21.00	253.93	6.30	105.67	2.21	51.18
T_4	212.67	20.45	250.66	6.46	173.53	2.26	56.64
T_5	234.03	20.16	219.60	5.10	100.00	2.50	43.08
T_6	228.47	22.43	246.75	6.93	244.37	2.40	45.29
T ₇	184.87	15.53	219.43	4.27	262.67	2.20	44.44
T_8	233.17	15.00	210.33	4.20	189.03	2.10	46.60
T ₉	213.70	20.32	239.23	7.90	88.77	2.02	41.00
T_{10}	171.67	17.50	235.60	3.73	229.00	2.93	51.61
T ₁₁	260.70	19.97	237.03	7.98	303.33	1.96	59.62
T ₁₂	203.52	18.47	239.03	4.12	160.33	2.41	36.67
T ₁₃	192.50	22.10	182.87	6.95	150.77	2.05	43.65
CD							
(0.05)	10.46*	NS	11.10*	NS	14.55*	NS	5.09*

S/d S/d

Signature of the Principal Investigator Signature of the Head of Station

KERALA AGRICULTURAL UNIVERSITY SUGARCANE RESEARCH STATION, THIRUVALLA

AICRP on Sugarcane –Crop Production

Annual Report for 2013-14

1. Name of the project : **Priming of cane node for accelerating germination**

2. Project No. : AS 66 3. Year of start : 2012-2013

4. Objective : 1.To find out suitable cane node priming technique.

2.To assess the effect of cane node on acceleration of germination.

5. Technical Programme

Treatments - 6

T₁: Un-primed cane node

T₂: Treating cane node in hot water at 50°C for 2 hours.

T₃: Treating cane node in hot water (50°C) urea solution (3%) for 2 hours

T₄: Priming cane node with cattle dung, cattle urine and water in 1:2:5 ratio.

T₅: Conventional 3-bud sett planting.

*T₆: Primed and sprouted cane node (Incubated for four days after priming) (*Put the single cane node in the slurry of cattle dung, cattle urine and water for 15 minutes. Take out the buds and put in decomposed FYM and cover it with sugarcane trash for 4-5 days for sprouting.)

Design - RBD, Variety - Madhuri Replications - Four

6. Results of the experiment for the current year:

The experiment was conducted to find out suitable cane node priming technique and to assess the effect of cane node on acceleration of germination. The crop was planted on 31.01.2013 and harvested on 20.1.2014.

The results revealed that the different priming techniques significantly influenced the germination percentage and shoot population.

Highest germination percentage and maximum shoot population were recorded in 3-bud sett planting (T_5) which was on par with the treatment of priming cane node in cattle dung, cows urine and water (T_4) . The lowest value for the above parameters were obtained for unprimed cane node (T_1) .

Highest cane length (255.74 cm), MCC (105540/ha), cane yield (108.62 t/ha) and sugar yield (13.32 t/ha) were recorded for the 3 bud sett planting (T_5) which was on par with the treatment T_4 . But cane girth, single cane weight, CCS% were not significantly influenced by the treatments.

7. Summary

The results revealed that the conventional 3-bud sett planting recorded the highest germination percentage, cane and sugar yield and it was on par with priming cane node with cattle dung, cattle urine and water in 1:2:5 ratio.

Effect of cane node on acceleration of germination and shoot population

Trea	ntments	Germination % at 20 DAS	Germination % at 30 DAS	Germination % at 40 DAS	Shoot popul- ation at 90 DAS (000/ha)	Shoot popul- ation at 120 DAS (000/ha)	Shoot popul- ation at 150 DAS (000/ha)
T_1	Un primed		10.01	4.00	102.20	127.00	0.7.00
	cane node	22.73	40.26	42.00	103.38	127.00	95.00
T_2	Cane node						
	in hot						
	water at						
	50° c for 2	22.15	40.45	40.05	11105	100 10	105.00
	hours	22.15	40.45	43.05	114.37	133.10	107.00
T_3	Cane node						
	in hot						
	water						
	(50° c) Urea						
	solution						
	(3%))for 2						
	hours	26.03	44.25	47.85	115.00	140.22	105.50
T_4	Cane node						
	in cattle						
	dung,						
	cows urine						
	and water						
	(1:2:5)	27.97	53.14	55.87	118.60	149.55	110.00
T ₅	3 bud sett	30.35	53.32	56.02	131.30	160.16	110.50
T_6	Primed						
	and						
	sprouted						
	cane node	18.05	32.73	35.72	99.57	128.75	82.25
CD	(0.05)	2.5*	2.79*	3.10*	8.22*	10.65*	11.20*

Cane yield and juice quality as influenced by cane node priming techniques

T	reatments	Cane length (cm)	Cane girth (cm)	Cane weight (kg)	MCC ('000/ha)	CCS (%)	Cane yield (t/ha)	Sugar yield (t/ha)
T ₁	Un primed							
	cane node	228.17	9.60	1.50	73.75	14.48	78.37	11.17
T_2	Cane node							
	in hot water							
	at 50° c for							
	2 hours	243.45	9.26	1.60	89.80	14.08	90.10	12.69
T ₃	Cane node							
	in hot water							
	$(50^{\circ} c)$							
	Urea							
	solution							
	(3%))for 2	0.45 - 61	0.71	1.60	00.20	10.50	0.7.00	11.00
	hours	247.61	9.51	1.62	90.20	12.59	95.20	11.99
T ₄	Cane node							
	in cattle							
	dung, cows							
	urine and							
	water	250.00	10.12	1.65	104.72	10.25	105.00	12.07
T	(1:2:5)	250.08	10.12	1.65	104.72	12.35	105.80	13.07
T ₅	3 bud sett	255.74	10.26	1.68	105.54	12.19	108.62	13.32
T ₆	Primed and							
	sprouted	222.00	0.42	1.45	00.12	16.22	00.02	11.50
CD	cane node	222.99	9.42	1.45	89.13	16.23	80.92	11.50
CD		18.76*	NG	NG	0.05*	NG	0.25*	1 50%
(0.05)			NS	NS	9.05*	NS	8.25*	1.70*

S/d S/d

Signature of the Principal Investigator Signature of the Head of Station